Spectral analysis of pseudodifferential operators. (English) Zbl 0317.47035


47Gxx Integral, integro-differential, and pseudodifferential operators
35S05 Pseudodifferential operators as generalizations of partial differential operators
47A55 Perturbation theory of linear operators
Full Text: DOI


[1] Calderon, A.P; Zygmund, A, Singular integral operators, Amer. J. math., 79, 901-921, (1957) · Zbl 0081.33502
[2] Hörmander, L, Fourier integral operators I, Acta math., 127, 79-183, (1971) · Zbl 0212.46601
[3] Weder, R.A, Spectral properties of one-body relativistic spin-zero Hamiltonians, Ann. inst. H. Poincaré sect. B, XX, 211-220, (1974)
[4] Weder, R.A, Spectral properties of the Dirac Hamiltonian, Ann. soc. sci. bruxelles Sér. I, 87, 341-355, (1973)
[5] Weder, R.A, On the Lee model with dilatation analytic cutoff function, J. math. phys., 15, 20-24, (1974)
[6] Jauch, J.M; Lavine, R; Newton, R.G, Scattering into cones, Helv. phys. acta, 45, 325-330, (1972)
[7] Dirac, P.A.M; Bakamjian, B; Thomas, L.H; Foldy, L.L, Rev. modern phys., Phys. rev., Phys. rev., 122, 275, (1961)
[8] Friedrichs, K.O, Trans. amer. math. soc., 55, 132-151, (1944)
[9] Schechter, M, Spectra of partial differential operators, (1971), North-Holland Amsterdam · Zbl 0225.35001
[10] Faris, W.G, Quadratic forms and essential self-adjointness, Helv. phys. acta, 45, 1074-1088, (1973)
[11] Kato, T, Perturbation theory for linear operators, (1966), Springer-Verlag Berlin/New York · Zbl 0148.12601
[12] Schwartz, L, Théorie des distributions, (1966), Hermann Paris
[13] Son, N.D; Sucher, J, Bound states of a relativistic two body Hamiltonian; comparison with the Bethe-Salpeter equation, Phys. rev., 153, 1496-1501, (1967)
[14] Lepore, J.V; Riddell, R.J, Relativistic spin-zero wave equation, J. math. phys., 13, 405-418, (1972)
[15] Weder, R.A, Spectral analysis of relativistic Hamiltonians, () · Zbl 0317.47035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.