×

zbMATH — the first resource for mathematics

Spitzen, Doppelpunkte und vertikale Tangenten in der Diskriminante verseller Deformationen von vollständigen Durchschnitten. (German) Zbl 0318.32015

MSC:
32G05 Deformations of complex structures
14D15 Formal methods and deformations in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Brieskorn, E.: Special singularities-resolution, deformation and monodromy. Vervielf?ltigte Noten ?ber Vortr?ge, gehalten am 25. Summer Research Institute of the A.M.S., Arcata, Calif. 1974
[2] Greuel, G.-M.: Der Gau?-Manin-Zusammenhang isolierter Singularit?ten von vollst?ndigen Durchschnitten. Math. Ann.214, 235-266 (1975) · Zbl 0292.14007
[3] Hamm, H., L? D?ng Tr?ng: Un th?or?me de Zariski du type de Lefschetz. Ann scient. ?c. Norm. Sup.6, 317-366 (1973)
[4] Henry, J. P., L? D?ng Tr?ng: Limites d’espaces tangents. Seminaire Nourget 1974/75. Lect. Notes in Math.482, 251-265. Berlin, Heidelberg, New York: Springer 1975
[5] Hironaka, H.: Vortrag in Bressanonne. C.I.M.E. 1974. Nicht ver?ffentlicht
[6] Iversen, B., L? D?ng Tr?ng: Calcul du nombre de cusps dans la d?formation semiuniverselle d’une singularit? isol?e d’hypersurface complex. Bull. Soc. Math. France102, 99-107 (1974) · Zbl 0298.14007
[7] Kas, A., Schlessinger, M.: On the versal deformation of a complex space with an isolated singularity. Math. Ann.196, 23-29 (1972) · Zbl 0242.32014
[8] L? D?ng Tr?ng: Calculation of Milnor number of isolated singularity of complete intersection. Funktsional’nyi Anal. i Ego Priloshezinja8, 45-49 (1974)
[9] L? D?ng Tr?ng, Ramanujam, C. P.: The invariance of milnor’s number implies the invariance of the topological type. Paris, Centre de Math. de l’?cole Polytechnique (Erscheint demn?chst)
[10] Lejeune, M., L? D?ng Tr?ng, Teissier, B.: Sur un crit?re d’?quisingularit?. C.R. Acad. Sc. Paris,217, 1065-1067 (1970) · Zbl 0204.54504
[11] Milnor, J.: Singular points of complex hypersurfaces. Ann. of Math. Stud.61 (1968) · Zbl 0184.48405
[12] Pham, F.: Courbes discriminants des singularites planes d’ordre 3. Ast?risque7 et8, 336-391 (1973)
[13] Remmert, R.: Projektionen analytischer Mengen. Math. Ann.130, 410-441 (1956) · Zbl 0070.07701
[14] Risler, J. J.: Sur l’id?al jacobien d’une courbe plane. Bull. Soc. math. France99, 305-311 (1971) · Zbl 0232.14010
[15] Saito, K.: Calcul algebrique de la monodromie. Ast?risque7 et8, 195-211 (1973)
[16] Serre, J. P.: Alg?bre locale et multiplicit?s. Lecture Notes in Math. 11. Berlin, Heidelberg, New York: Springer 1965
[17] Teissier, B.: Cycles ?vanescentes, sectiones planes, et conditions de Whitney. Ast?risque7 et8, 285-362 (1973)
[18] Tjurina, G. N.: Locally semi-universal flat deformations of isolated singularities of complex spaces. Math. of the USSR Izvestija3, 967-999 (1970) · Zbl 0209.11301
[19] Vohmann, H.D.: Einige Eigenschaften der kritischen Menge und der Diskriminante verseller Deformationen vollst?ndiger Durchschnitte mit isolierter Singularit?t. Dissertation, Bonn (1974). Erscheint in Bonner Math. Schriften70 · Zbl 0325.32005
[20] Whitney, H.: Tangents to an analytic variety. Ann. of Math.81, 496-549 (1965) · Zbl 0152.27701
[21] Zariski, O.: Contributions to the problem of equisingularity. C.I.M.E. 1969 (Varenna) ?Questions on algebraic varieties?. Roma: Editione Cremonese 1970 · Zbl 0204.54503
[22] Greuel, G.-M.: Die Zahl der Spitzen und der Jacobiring einer isolierten Hyperfl?chensingularit?t. In Vorbereitung
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.