×

zbMATH — the first resource for mathematics

Existence theorem for solutions of the Bogolyubov equations. (English. Russian original) Zbl 0318.70011
Theor. Math. Phys. 19(1974), 560-573 (1975); translation from Teor. Mat. Fiz. 19, 344-363 (1974).

MSC:
70G10 Generalized coordinates; event, impulse-energy, configuration, state, or phase space for problems in mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. N. Bogolyubov, Zh. √Čksp. Teor. Fiz.,16, 681, 691 (1946).
[2] N. N. Bogolyubov, ?Problems of a dynamical theory in statistical physics,? in: Studies in Statistical Mechanics Vol. 1 (J. de Boer and G. E. Uhlenbeck, editors), North-Holland, Amsterdam (1962). · Zbl 0116.45101
[3] G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Physics, AMS, Providence, R. I. (1963). · Zbl 0111.43802
[4] G. E. Uhlenbeck, in the book by M. Kac, Probability and Related Topics in Physical Sciences, London (1959).
[5] O. E. Lanford, Commun. Math. Phys.,9, 126 (1968);11, 257 (1969).
[6] Ya. G. Sinai, Teor. Mat. Fiz.,11, 248 (1972).
[7] A. N. Zemlyakov, Usp. Mat. Nauk.,28, 247 (1973).
[8] Ya. G. Sinai, Vestn. MGU, Ser. Matem. i Mekh., No. 1, 152 (1974).
[9] B. M. Gurevich, Ya. G. Sinai, and Yu. M. Subkhov, Usp. Mat. Nauk.,28, No. 5, 45 (1973).
[10] G. Gallavotti, O. E. Lanford, and J. L. Lebowitz, J. Math. Phys.,11, 2898 (1970). · doi:10.1063/1.1665459
[11] D. Ya. Petrina, Teor. Mat. Fiz.,13, 391 (1972).
[12] D. Ya. Petrina and O. K. Vidybida, Preprint ITF 73-58E (1973).
[13] R. L. Dobrushin, Funktsional’nyi Analiz i Ego Prilozheniya,3, 71 (1969).
[14] Yu. M. Sukhov, Tr. Mosk. Matem. O-Va,24, 175 (1971).
[15] A. Khaitov, Tr. Mosk. Matem. O-Va,28 (1973).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.