Fuzzy logic and approximate reasoning. (English) Zbl 0319.02016


03B50 Many-valued logic
94-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to information and communication theory
Full Text: DOI


[1] J. ?ukasiewicz, Aristotle’s Syllogistic, Clarendon Press, Oxford, 1951.
[2] J. Hintikka and P. Suppes (eds.), Aspects of Inductive Logic, North-Holland Publ. Co., Amsterdam, 1966. · Zbl 0158.24101
[3] N. Rescher, Many-Valued Logic, McGraw-Hill, New York, 1969. · Zbl 0248.02023
[4] L. A. Zadeh, ?The Concept of a Linguistic Variable and Its Application to Approximate Reasoning?, Memorandum No. ERL-M411, Electronics Research Lab., Univ. of Calif., Berkeley, Calif., October 1973.
[5] L. A. Zadeh, ?Quantitative Fuzzy Semantics?, Information Sciences 3 (1971), 159-176. · Zbl 0218.02057 · doi:10.1016/S0020-0255(71)80004-X
[6] D. Knuth, ?Semantics of Context-Free Languages?, Math. Systems Theory 2 (1968), 127-145. · Zbl 0169.01401 · doi:10.1007/BF01692511
[7] L. A. Zadeh, ?Fuzzy Sets?, Information and Control 8 (1965), 338-353. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[8] A. Kaufmann, Theory of Fuzzy Sets, Masson, Paris, 1972.
[9] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation and Compiling, Prentice-Hall, Englewood Cliffs, N.J., 1973. · Zbl 0309.68068
[10] L. A. Zadeh, ?A Fuzzy-Set-Theoretic Interpretation of Linguistic Hedges?, Jour. of Cybernetics 2 (1972), 4-34. · doi:10.1080/01969727208542910
[11] G. Lakoff, ?Hedges: A Study of Meaning Criteria and the Logic of Fuzzy Concepts?, Jour. of Philosophical Logic 2 (1973), 458-508. · Zbl 0272.02047
[12] L. A. Zadeh, ?A Fuzzy-Algorithmic Approach to the Definition of Complex or Imprecise Concepts?, Memorandum No. ERL-M474, Electronics Research Lab., Univ. of Calif., Berkeley, Calif., 1974.
[13] M. Black, ?Reasoning with Loose Concepts?, Dialogue 2 (1963), 1-12. · doi:10.1017/S001221730004083X
[14] J. A. Goguen, ?The Logic of Inexact Concepts?, Synthese 19 (1969), 325-373. · Zbl 0184.00903 · doi:10.1007/BF00485654
[15] W. V. Quine, From a Logical Point of View, Harvard Univ. Press, Cambridge, 1953. · Zbl 0050.00501
[16] K. Fine, ?Vagueness, Truth and Logic?, this issue, pp. 265-300. · Zbl 0311.02011
[17] B. C. van Fraassen, ?Presuppositions, Supervaluations and Free Logic?, in The Logical Way of Doing Things, K. Lambert (ed.), Yale Univ. Press, New Haven, 1969.
[18] A. Tarski, Logic, Semantics, Metamathematics, Clarendon Press, Oxford, 1956.
[19] H. A. Simon and L. Siklossy (eds.), Representation and Meaning Experiments with Information Processing Systems, Prentice-Hall, Englewood Cliffs, N.J., 1972.
[20] J. Hintikka, J. Moravcsik, and P. Suppes (eds.), Approaches to Natural Language, D. Reidel Publ. Co., Dordrecht, 1973. · Zbl 0266.00002
[21] J. A. Goguen, Jr., ?Concept Representation in Natural and Artificial Languages: Axioms, Extensions and Applications for Fuzzy Sets?, Inter. Jour. of Man-Machine Studies 6 (1974), 513-561. · Zbl 0321.68055 · doi:10.1016/S0020-7373(74)80017-9
[22] G. Lakoff, ?Linguistic and Natural Logic?, in Semantics of Natural Languages, D. Davidson and G. Harman (eds.), D. Reidel Publ. Co., Dordrecht, 1971. · Zbl 0209.30101
[23] C. G. Hempel, ?Fundamentals of Concept Formation in Empirical Science?, in International Encyclopedia of Unified Science, vol. 2, 1952.
[24] C. J. Fillmore, ?Toward A Modern Theory of Case?, pp. 361-375 in Modern Studies in English, Reibel and Schane (eds.), Prentice-Hall, Toronto, 1969.
[25] W. A. Martin, ?Translation of English into MAPL Using Winogard’s Syntax, State Transition Networks, and a Semantic Case Grammar?, MIT APG Internal Memo 11, April 1973.
[26] R. C. Schank, ?Conceptual Dependency: A Theory of Natural Language Understanding?, Cognitive Psychology 3 (1972), 552-631. · doi:10.1016/0010-0285(72)90022-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.