×

zbMATH — the first resource for mathematics

An extension theorem for functions on semigroups. (English) Zbl 0319.22002

MSC:
22A99 Topological and differentiable algebraic systems
54C20 Extension of maps
43A60 Almost periodic functions on groups and semigroups and their generalizations (recurrent functions, distal functions, etc.); almost automorphic functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] John F. Berglund, On extending almost periodic functions, Pacific J. Math. 33 (1970), 281 – 289. · Zbl 0184.05501
[2] J. F. Berglund and K. H. Hofmann, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes in Mathematics, No. 42, Springer-Verlag, Berlin-New York, 1967. · Zbl 0155.18702
[3] R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach Science Publishers, New York-London-Paris, 1970. · Zbl 0192.48602
[4] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. · Zbl 0416.43001
[5] Anthony To-ming Lau, Invariant means on dense subsemigroups of topolgical groups, Canad. J. Math. 23 (1971), 797 – 801. · Zbl 0216.09103
[6] Paul Milnes, Extension of continuous functions on topological semigroups, Pacific J. Math. 58 (1975), no. 2, 553 – 562. · Zbl 0275.43007
[7] Theodore Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630 – 641. · Zbl 0219.22003
[8] A. Weil, Sur les espaces à structure uniforme et sur la topologie générale, Hermann, Paris, 1937. · JFM 63.0569.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.