×

zbMATH — the first resource for mathematics

The Wiener type solution of the Dirichlet problem in potential theory. (English) Zbl 0319.31009

MSC:
31C05 Harmonic, subharmonic, superharmonic functions on other spaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bauer, H.: Harmonische Räume und ihre Potentialtheorie. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0142.38402
[2] Bliedtner, J., Hansen, W.: Simplicial cones in potential theory. Invent. Math.29, 83–110 (1975) · Zbl 0308.31011
[3] Brelot, M.: Familles de Perron et problème de Dirichlet. Acta Sci. Math. (Szeged)9, 133–153 (1938–1940) · JFM 65.0418.03
[4] Brelot, M.: Sur un théorème du prolongement fonctionnel de Keldych concernant le problème de Dirichlet. J. Analyse Math.8, 273–288 (1961) · Zbl 0111.09604
[5] Brelot, M.: Axiomatique des fonctions harmoniques. Montréal: Les Presses de l’Université de Montréal 1966
[6] Constantinescu, C., Cornea, A.: Potential theory on harmonic spaces. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0248.31011
[7] Hervé, R.-M.: Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel. Ann. Inst. Fourier12, 415–571 (1962) · Zbl 0101.08103
[8] Keldych, M. V.: On the resolutivity and the stability of Dirichlet problem (Russian). Uspechi Mat. Nauk8, 172–231 (1941)
[9] Keldych, M. V.: On the Dirichlet problem. Dokl. Akad. Nauk SSSR32, 308–309 (1941)
[10] Landis, E. M.: Necessary and sufficient conditions for the regularity of a boundary point for the Dirichlet problem for the heat equation (Russian). Dokl. Akad. Nauk SSSR185, 517–520 (1969) · Zbl 0187.03803
[11] Landis, E. M.: Equations of the second order of elliptic and parabolic types (Russian). Nauka, Moscow 1971 · Zbl 0226.35001
[12] Lukeš, J.: Théorème de Keldych dans la théorie axiomatique de Bauer des fonctions harmoniques. Czech. Math. J.24, 114–125 (1974)
[13] Monna, A. F.: Note sur le problème de Dirichlet. Nieuw Arch. Wiskunde19, 58–64 (1971) · Zbl 0207.10901
[14] Perron, O.: Eine neue Behandlung der ersten Randwertaufgabe für {\(\Delta\)}u=0. Math. Z.18, 42–54 (1923) · JFM 49.0340.01
[15] Remak, R.: Über potentialkonvexe Funktionen. Math. Z.20, 126–130 (1924) · JFM 50.0333.01
[16] Sternberg, W.: Über die Gleichung der Wärmeleitung. Math. Ann.101, 394–398 (1929) · JFM 55.0290.14
[17] Wiener, N.: Certain notions in potential theory. J. Math. Mass.3, 24–51 (1924) · JFM 50.0646.03
[18] Wiener, N.: Note on a paper of O. Perron. J. Math. Mass.4, 21–32 (1925) · JFM 51.0361.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.