×

zbMATH — the first resource for mathematics

Prolongements d’équations différentielles linéaires. III: La suite exacte de cohomologie de Spencer. (French) Zbl 0319.35018

MSC:
35G05 Linear higher-order PDEs
35B99 Qualitative properties of solutions to partial differential equations
58J99 Partial differential equations on manifolds; differential operators
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] H. GOLDSCHMIDT , Existence theorems for analytic linear partial differential equations (Ann. of Math., vol. 86, 1967 , p. 246-270). MR 36 #2933 | Zbl 0154.35103 · Zbl 0154.35103 · doi:10.2307/1970689
[2] H. GOLDSCHMIDT , Prolongations of linear differential equations. I. A conjecture of Élie Cartan (Ann. scient. Éc. Norm. Sup., 4e série, tome 1, 1968 , p. 417-444). Numdam | MR 38 #3888 | Zbl 0167.09402 · Zbl 0167.09402 · numdam:ASENS_1968_4_1_3_417_0 · eudml:81837
[3] H. GOLDSCHMIDT , On the Spencer cohomology of a Lie equation (Proc. Sympos. Pure Math., vol. 23, Amer. Math. Soc., Providence, R. I., 1973 , p. 379-385). MR 49 #8064 | Zbl 0264.58010 · Zbl 0264.58010
[4] D. MUMFORD , Lectures on curves on an algebraic surface (Ann. of Math. Studies, n^\circ 59, Princeton University Press, Princeton, N. J., 1966 ). MR 35 #187 | Zbl 0187.42701 · Zbl 0187.42701
[5] D. G. QUILLEN , Formal properties of over-determined systems of linear partial differential equations (Ph. D. thesis, Harvard University, 1964 ). · Zbl 1295.35005
[6] J.-P. SERRE , Faisceaux algébriques cohérents (Ann. of Math., vol. 61, 1955 , p. 197-278). MR 16,953c | Zbl 0067.16201 · Zbl 0067.16201 · doi:10.2307/1969915
[7] D. C. SPENCER , Overdetermined systems of linear partial differential equations (Bull. Amer. Math. Soc., vol. 75, 1969 , p. 179-239). Article | MR 39 #3533 | Zbl 0185.33801 · Zbl 0185.33801 · doi:10.1090/S0002-9904-1969-12129-4 · minidml.mathdoc.fr
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.