×

zbMATH — the first resource for mathematics

Factoring absolutely convergent series. (English) Zbl 0319.40007

MSC:
40H05 Functional analytic methods in summability
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Banach, S.: Th?orie des op?rations lin?aires. Warsaw 1932 · Zbl 0005.20901
[2] Day, M. M.: Normed linear spaces. New York 1962 · Zbl 0100.10802
[3] Hocking, J. S., Young, G. S.: Topology. Reading, Massachusetts 1961
[4] Hurwicz, W., Wallman, H.: Dimension theory. Princeton, N.J.: Academic Press 1941 · JFM 67.1092.03
[5] Klee, V.: Some new results on smoothness and rotundity in normed linear spaces. Math. Ann.139, 51-63 (1959) · Zbl 0092.11602
[6] K?the, G., Toeplitz, O: Lineare R?ume mit unendlichen vielen Koordinaten und Ringe unendlicher Matrizen. J. reine angew. Math.171, 193-226 (1934) · Zbl 0009.25704
[7] Ruckle, W.: On the characterization of sequence spaces associated with Schauder bases. Studia Math.28, 279-288 (1967) · Zbl 0158.13502
[8] Ruckle, W.: Representation and series summability of complete biorthogonal sequences. Pac. J. Math.34, 509-526 (1970) · Zbl 0202.39404
[9] Ruckle, W.: Absolutely divergent series and isomorphism of subspaces II. to appear · Zbl 0349.46014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.