Some nonconforming finite elements for the plate bending problem. (English) Zbl 0319.73042


74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
Full Text: EuDML


[1] ADINI A . - CLOUGH R.W.Analysis of plate bending by the finite element method. NSF Report G. 7337, 1961.
[2] AUBIN J.P.Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkiris and finite difference methods. Ann. Scuola Norm. Sup. Pisa 21, 599-637, 1967. Zbl0276.65052 MR233068 · Zbl 0276.65052
[3] BAZELEY G.P. - CHEUNG Y.K - IRONS B.M. - ZIENKIEWICZ O.C.Triangular elements in bending-conforming and nonconforming solutions. Proceedings Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B. Ohio, 1965.
[4] CIARLET P.G.Conforming and Nonconforming finite element methods for solving the plate problem. Proceedings Conference on the Numerical Solution of Differential Equations, University of Dundee, July 03-06, 1973. Zbl0285.65072 MR423832 · Zbl 0285.65072
[5] CIARLET P.G.Quelques méthodes d’éléments finis pour le problème d’une plaque encastrée. Colloques IRIA, Méthodes de Calcul Scientifique et Technique, 66-86, Rocquencourt, 1973. Zbl0285.65042 · Zbl 0285.65042
[6] CIARLET P.G. - RAVIART P.A.General Lagrange and Hermite interpolation in \(R^n\) with applications to finite element methods. Arch. Rational Mech. Anal. 46, 177-199, 1972. Zbl0243.41004 MR336957 · Zbl 0243.41004 · doi:10.1007/BF00252458
[7] CIARLET P.G - RAVIART P.A.Error bounds for finite elements ”with normal derivatives” (to appear).
[8] CROUZEIX M. - RAVIART P.A.Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I (to appear). Zbl0302.65087 MR343661 · Zbl 0302.65087
[9] FRAEIJS DE VEUBEKE B.Variational Principles and the Patch Test. (to appear). Zbl0284.73043 · Zbl 0284.73043 · doi:10.1002/nme.1620080408
[10] IRONS B.M. - RAZZAQUE A.Expérience with the patch test for convergence of finite elements. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, Editor), 557-587 - Academic Press, New York, 1972. Zbl0279.65087 MR423839 · Zbl 0279.65087
[11] JOHNSON COn the convergence of a mixed finite element method for plate bending problems Numer Math 21, 43-62, 1973 Zbl0264.65070 MR388807 · Zbl 0264.65070 · doi:10.1007/BF01436186
[12] KONDRATEV VABoundary value problems for elliptic equations with conical or angular points Trans Moscow Math Soc ,227-313, 1967 Zbl0194.13405 · Zbl 0194.13405
[13] LANDAU L - LIFCHITZ ETheory of Elasticity Pergamon Press 1970
[14] LIONS JL - MAGENES EProblèmes aux limites non-homogènes Dunod, 1968
[15] MORLEY L S DThe triangular equilibrium element in the solution of plate bending problems Aero-Quart 19, 149-169, 1968
[16] MlYOSHY TConvergence of finite element solutions represented by a non-conforming basis Kumamoto J Sci Math 9, 11-20, 1972 Zbl0236.65071 MR309411 · Zbl 0236.65071
[17] NITSCHE JConvergence of non conforming elements Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, Madison, Wisconsin, April 1-3, 1974 Zbl0324.00023 · Zbl 0324.00023
[18] NlTSCHE JEin Kriterium für die Quasi-optimalitat des Ritzschen Verfahrens Numer Math. 13, 260-265, 1969. Zbl0175.45801 · Zbl 0175.45801 · doi:10.1007/BF02166687
[19] STRANG GVariational Crimes in the finite element method The mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A K Aziz, Editor), 689-710, Academic Press, New York, 1972 Zbl0264.65068 MR413554 · Zbl 0264.65068
[20] STRANG G - FIX GAn analysis of the Finite Element Method Prentice Hall, Englewood Cliffs, 1973 Zbl0356.65096 MR443377 · Zbl 0356.65096
[21] ZIENKIEWICZ OCThe Finite Element Method in Engineering Science Mac Graw-Hill, London, 1971 Zbl0237.73071 MR315970 · Zbl 0237.73071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.