×

Rado’s theorem for polymatroids. (English) Zbl 0321.05028


MSC:

05B35 Combinatorial aspects of matroids and geometric lattices
05C20 Directed graphs (digraphs), tournaments
90B10 Deterministic network models in operations research
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Folkman, Combinatorial mathematics and its applications (1969)
[2] DOI: 10.1007/BF01817698 · Zbl 0174.26702 · doi:10.1007/BF01817698
[3] De Werra, Canad. Op. Rea. Soc. Journal 8 pp 165– (1970)
[4] Welsh, Studies in Pure Mathematics pp 261– (1971)
[5] DOI: 10.1112/jlms/s2-2.2.251 · Zbl 0214.26301 · doi:10.1112/jlms/s2-2.2.251
[6] Rado, Quart. J. Math. 13 pp 83– (1942)
[7] Ford, Flows in networks (1962)
[8] DOI: 10.1112/blms/5.1.18 · Zbl 0264.05023 · doi:10.1112/blms/5.1.18
[9] DOI: 10.1093/imamat/9.1.23 · Zbl 0243.90046 · doi:10.1093/imamat/9.1.23
[10] DOI: 10.1112/plms/s3-29.4.750 · Zbl 0298.05134 · doi:10.1112/plms/s3-29.4.750
[11] Ingleton, J. Combinatorial Theory B 15 pp 51– (1973) · Zbl 0264.05021 · doi:10.1016/0095-8956(73)90031-2
[12] DOI: 10.1112/jlms/s1-10.37.26 · Zbl 0010.34503 · doi:10.1112/jlms/s1-10.37.26
[13] Mirsky, Transversal theory (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.