×

A general theorem on triangular finite \(C^(m)\)-elements. (English) Zbl 0321.41003


MSC:

41A10 Approximation by polynomials
65Z05 Applications to the sciences
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] BELL K., A refined triangular plate bending finite element Int. J. Num. Meth. Engng., 1969, 1, 101-122. Zbl0247.73071 · Zbl 0247.73071 · doi:10.1002/nme.1620010104
[2] BRAMBLE J. H. and ZLÁMAL M., Triangular elements in the finite element method. Math. Comp., 1970, 24, 809-820. Zbl0226.65073 MR282540 · Zbl 0226.65073 · doi:10.2307/2004615
[3] [3] KOUKALS S., Piecewise polynomial interpolations in the finite element method. Apl.Mat., 1973, 18, 146-160. Zbl0305.65070 MR321318 · Zbl 0305.65070
[4] STRANG G. and FIX G., An analysis of the finite element method. Prentice-Hall Inc., Englewood Cliffs, N. J., 1973. Zbl0356.65096 MR443377 · Zbl 0356.65096
[5] [5] ŽEN>\?ŠEK A., Interpolation polynomials on the triangle. Numer. Math., 1970, 15, 283-296. Zbl0216.38901 MR275014 · Zbl 0216.38901 · doi:10.1007/BF02165119
[6] ŽEN>\?ŠEK A., Polynomial approximation on tetrahedrons in the finite element method.J. Approx. Theory, 1973, 7, 334-351. Zbl0279.41005 MR350260 · Zbl 0279.41005 · doi:10.1016/0021-9045(73)90036-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.