×

zbMATH — the first resource for mathematics

Convexity, monotonicity, and gradient processes in Hilbert space. (English) Zbl 0321.49025

MSC:
90C99 Mathematical programming
58E99 Variational problems in infinite-dimensional spaces
46G10 Vector-valued measures and integration
47H05 Monotone operators and generalizations
47H10 Fixed-point theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kachurovskii, R.I, On monotone operators and convex functionals, Uspehi mat. nauk, 15, 213-215, (1960)
[2] Browder, F.E, Existence of periodic solutions for nonlinear equations of evolution, (), 1100-1103 · Zbl 0135.17601
[3] Browder, F.E, Nonexpansive nonlinear operators in a Banach space, (), 1041-1044 · Zbl 0128.35801
[4] Browder, F.E, Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. rational mech. anal., 24, 82-90, (1967) · Zbl 0148.13601
[5] Edelstein, M, An extension of Banach’s contraction mapping principle, (), 7-10 · Zbl 0096.17101
[6] Edelstein, M, On non expansive mappings in Banach spaces, (), 439-447 · Zbl 0196.44603
[7] Opial, Z, Weak convergence of the successive approximations for non expansive mappings in Banach spaces, Bull. amer. math. soc., 73, 591-597, (1967) · Zbl 0179.19902
[8] Petryshyn, W.V, Construction of fixed points of demicompact mappings in Hilbert space, J. math. anal. appl., 14, 276-284, (1966) · Zbl 0138.39802
[9] Petryshyn, W.V, On the extension and solution of nonlinear operator equations, Illinois J. math., 10, 255-274, (1966) · Zbl 0139.31503
[10] Zarantonello, E.H, Solving functional equations by contractive averaging, Mathematics research center technical report no. 160, (June 1960), Madison Wis.
[11] Browder, F.E, On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces, (), 419-425 · Zbl 0143.36902
[12] Browder, F.E, Existence and approximation of solutions of nonlinear variational inequalities, (), 1080-1086 · Zbl 0148.13502
[13] Browder, F.E; Petryshyn, W.V, Construction of fixed points of nonlinear mappings in Hilbert space, J. math. anal. appl., 20, 197-228, (1967) · Zbl 0153.45701
[14] Reinermann, J, Über fixpunkte kontrahierender abbildungen und schwach konvergente Toeplitz-verfahren, Arch. math. (basel), 20, 59-64, (1969) · Zbl 0174.19401
[15] Groetsch, C.W, Segmenting Mann iterates, Notices amer. math. soc., 17, 828-829, (1970)
[16] Dunn, J.C, On recursive averaging processes and Hilbert space extensions of the contraction mapping principle, J. franklin inst., 295, 2, 117-133, (1973) · Zbl 0297.47043
[17] Kantorovich, L.V, Functional analysis and applied mathematics, Uspehi mat. nauk, 3, 6, 89-185, (1948) · Zbl 0034.21203
[18] Altman, M, The best successive approximation and the methods in functional analysis, (1959), California Institute of Technology Pasadena
[19] Vainberg, M.M, On the convergence of the method of steepest descents for nonlinear equations, Soviet math. dokl., 1, 1-4, (1960) · Zbl 0089.11301
[20] Goldstein, A.A, Minimizing functionals on Hilbert space, (), 159-165 · Zbl 0151.21005
[21] Goldstein, A.A, On steepest descent, SIAM J. control A, 3, 1, 147-151, (1965) · Zbl 0221.65094
[22] Armijo, L, Minimization of functions having continuous partial derivatives, Pacific J. math., 16, 1-3, (1966) · Zbl 0202.46105
[23] Polyak, B.T, Gradient methods for the minimization of functionals, Ž. vyčise. mat. i mat. fiz., 3, 4, 643-653, (1963) · Zbl 0196.47701
[24] Polak, E, An historical survey of computational methods in optimal control, SIAM rev., 15, 2, (1973) · Zbl 0274.49001
[25] Curry, H, The method of steepest descent for nonlinear minimization problems, Quart. appl. math., 2, 258-261, (1944) · Zbl 0061.26801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.