×

zbMATH — the first resource for mathematics

An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. (English) Zbl 0321.65059

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J20 Variational methods for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ivo Babuška, Error-bounds for finite element method, Numer. Math. 16 (1970/1971), 322 – 333. · Zbl 0214.42001 · doi:10.1007/BF02165003 · doi.org
[2] A. K. Aziz , The mathematical foundations of the finite element method with applications to partial differential equations, Academic Press, New York-London, 1972. · Zbl 0259.00014
[3] James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809 – 820. · Zbl 0226.65073
[4] J. Nitsche, Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal. 36 (1970), 348 – 355 (German). · Zbl 0192.44503 · doi:10.1007/BF00282271 · doi.org
[5] Miloš Zlámal, A finite element procedure of the second order of accuracy, Numer. Math. 14 (1969/1970), 394 – 402. · Zbl 0209.18002 · doi:10.1007/BF02165594 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.