×

Supersingular K3 surfaces. (English) Zbl 0322.14014


MathOverflow Questions:

What are supersingular varieties?

MSC:

14J25 Special surfaces
32J15 Compact complex surfaces
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] M. ARTIN , Algebraic approximation of structures over complete local rings (Pub. Math. Inst. Hautes Études Sci., vol. 36, 1969 , p. 23-58). Numdam | MR 42 #3087 | Zbl 0181.48802 · Zbl 0181.48802
[2] M. ARTIN , Algebraic construction of Brieskorn’s resolutions (J. Alg., vol. 29, 1974 , p. 330-348). MR 50 #7143 | Zbl 0292.14013 · Zbl 0292.14013
[3] M. ARTIN , A. GROTHENDIECK and J.-L. VERDIER , Théorie des topos et cohomologie des schémas , T. 3 (Lecture Notes in Mathematics, No. 305, Springer, Berlin, 1973 ). MR 50 #7132 | Zbl 0245.00002 · Zbl 0245.00002
[4] M. ARTIN and B. MAZUR , Formal groups arising from algebraic varieties (to appear). Numdam | Zbl 0351.14023 · Zbl 0351.14023
[5] M. ARTIN and H. P. F. SWINNERTON-DYER , The Shafarevich-Tate conjecture for pencils of elliptic curves on K 3 surfaces (Invent. Math., vol. 20, 1973 , p. 249-266). MR 54 #5240 | Zbl 0289.14003 · Zbl 0289.14003
[6] A. GROTHENDIECK , Éléments de géométrie algébrique III , (Pub. Math. Inst. Hautes Études Sci., vol. 11, 1961 ). Numdam · Zbl 0122.16102
[7] A. GROTHENDIECK , Le groupe de Brauer (Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968 ). Zbl 0192.57801 · Zbl 0192.57801
[8] J.-I. IGUSA , Betti and Picard numbers of abstract algebraic surfaces (Proc. Nat. Acad. Sci., vol. 46, 1960 , p. 724-726). MR 22 #9496 | Zbl 0099.16402 · Zbl 0099.16402
[9] K. KODAIRA , On compact analytic surfaces II (Ann. of Math., vol. 77, 1963 , p. 563-626). Zbl 0118.15802 · Zbl 0118.15802
[10] M. LAZARD , Sur les groupes de Lie formels à un paramètre (Bull. Soc. math. Fr., vol. 83, 1955 , p. 251-274). Numdam | MR 17,508e | Zbl 0068.25703 · Zbl 0068.25703
[11] F. OORT Commutative group schemes (Lecture Notes in Mathematics, No. 15, Springer, Berlin, 1966 . MR 35 #4229 | Zbl 0216.05603 · Zbl 0216.05603
[12] PIATETSKI-SHAPIRO and I. R. SHAFAREVICH , A Torelli theorem for algebraic surfaces of type K 3 (Izv. Akad. Nauk. S.S.S.R., vol. 35, 1971 , and Math. U.R.S.S. (Izvestia, vol. 5, 1971 , p. 547-588). Zbl 0253.14006 · Zbl 0253.14006
[13] M. RAYNAUD , Caractéristique d’Euler-Poincaré d’un faisceau et cohomologie des variétés abéliennes (Séminaire Bourbaki 1964 - 1965 . Exposé, reprinted in Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968 ). Numdam | Zbl 0204.54301 · Zbl 0204.54301
[14] J.-P. SERRE , Groupes pro-algébriques (Pub. Math. Inst. Hautes Études Sci., vol. 7, 1960 ). Numdam | MR 22 #9493
[15] J.-P. SERRE , Cours d’arithmétique , Presses Universitaires de France, Paris, 1970 . MR 41 #138 | Zbl 0225.12002 · Zbl 0225.12002
[16] T. SHIODA , On elliptic modular surfaces (J. Math. Soc. Japan, vol. 24, 1972 , p. 20-59). Article | MR 55 #2927 | Zbl 0226.14013 · Zbl 0226.14013
[17] T. SHIODA , On rational points of the generic elliptic curve with level N structure over the field of mudular functions of level N (J. Math. Soc. Japan, vol. 25, 1973 , p. 144-157). Article | MR 47 #5001 | Zbl 0243.14009 · Zbl 0243.14009
[18] T. SHIODA , Algebraic cycles on certain K 3 surfaces in characteristic p (to appear). Zbl 0311.14007 · Zbl 0311.14007
[19] J. TATE , Algebraic cycles and poles of zeta functions (Arithmetic Algebraic Geometry, p. 93-110, Harper and Row, New York, 1965 ). MR 37 #1371 | Zbl 0213.22804 · Zbl 0213.22804
[20] J. TATE , On the conjecture of Birch and Swinnerton-Dyer and a geometric analog (Séminaire Bourbaki, 1965 / 1966 . Exposé 306, reprinted in Dix exposés sur la cohomologie des schémas, North Holland, Amsterdam, 1968 ). Numdam | Zbl 0199.55604 · Zbl 0199.55604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.