×

zbMATH — the first resource for mathematics

Unitary nilpotent groups and Hermitian K-theory. I. (English) Zbl 0322.57020

MSC:
57R65 Surgery and handlebodies
16E20 Grothendieck groups, \(K\)-theory, etc.
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Sylvain Cappell, Superspinning and knot complements, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 358 – 383. · Zbl 0281.57001
[2] Sylvain Cappell, A splitting theorem for manifolds and surgery groups, Bull. Amer. Math. Soc. 77 (1971), 281 – 286. · Zbl 0215.52601
[3] Sylvain E. Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976), no. 2, 69 – 170. · Zbl 0348.57017 · doi:10.1007/BF01402340 · doi.org
[4] Sylvain E. Cappell, Mayer-Vietoris sequences in hermitian \?-theory, Algebraic K-theory, III: Hermitian K-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 478 – 512. Lecture Notes in Math., Vol. 343.
[5] Sylvain E. Cappell, On connected sums of manifolds, Topology 13 (1974), 395 – 400. · Zbl 0291.57007 · doi:10.1016/0040-9383(74)90030-5 · doi.org
[6] Sylvain E. Cappell, Splitting obstructions for Hermitian forms and manifold with Z2\?\pi 1, Bull. Amer. Math. Soc. 79 (1973), 909-914. · Zbl 0272.57016
[7] Sylvain E. Cappell, Manifolds with fundamental group a generalized free product. I, Bull. Amer. Math. Soc. 80 (1974), 1193 – 1198. · Zbl 0341.57007
[8] Sylvain E. Cappell, On homotopy invariance of higher signatures, Invent. Math. 33 (1976), no. 2, 171 – 179. · Zbl 0335.57007 · doi:10.1007/BF01402341 · doi.org
[9] Sylvain E. Cappell and Julius L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. (2) 99 (1974), 277 – 348. · Zbl 0279.57011 · doi:10.2307/1970901 · doi.org
[10] Ronnie Lee, Splitting a manifold into two parts, Mimeographed notes, Inst. Adv. Study, Princeton, N.J., 1969.
[11] Frank Quinn, ^\?(\?\?\?_\?)^\ast \ast \ast \?\?\ast \ast and the surgery obstruction, Bull. Amer. Math. Soc. 77 (1971), 596 – 600. · Zbl 0226.57015
[12] Friedhelm Waldhausen, Whitehead groups of generalized free products, Algebraic K-theory, II: ”Classical” algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 155 – 179. Lecture Notes in Math., Vol. 342. · Zbl 0326.18010
[13] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London-New York, 1970. London Mathematical Society Monographs, No. 1. · Zbl 0219.57024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.