×

zbMATH — the first resource for mathematics

On the numerical solution of plate bending problems by hybrid methods. (English) Zbl 0322.73048

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
65Z05 Applications to the sciences
65N99 Numerical methods for partial differential equations, boundary value problems
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] A. ADINI and R. W. CLOUGH, Analysis of plate bending by the finite element method, NSF Report G. 7337, 1961.
[2] F. K. BOGNER, R. L. FOX and L. A. SCHMIT, The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas, Conference on Matric Methods in Structural Mechanics, Wright Patterson A.F.B., Ohio, 1965.
[3] J. H. BRAMBLE and R. S. HILBERT, Estimation of linear functionals on Sobolev Spaces with applications to Fourier transforms andspline interpolation, SIAM J. Numer. Anal. 7, pp. 112-124, 1970. Zbl0201.07803 MR263214 · Zbl 0201.07803 · doi:10.1137/0707006
[4] [4] J. H. BRAMBLE and R. S. HILBERT, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math., 16, pp.362-369, 1971. Zbl0214.41405 MR290524 · Zbl 0214.41405 · doi:10.1007/BF02165007 · eudml:132041
[5] J. H. BRAMBLE and M. ZLAMAL, Triangular Elements in the finite element method, Math. Comp. 24, pp. 809-820, 1970. Zbl0226.65073 MR282540 · Zbl 0226.65073 · doi:10.2307/2004615
[6] F. BREZZI, Sur une méthode hybride pour l’approximation du problème de la torsion d’une barre élastique Rend. Ist. Lombardo Sci. Lett. A, 108 (1974), 274-300. Zbl0351.73081 MR378556 · Zbl 0351.73081
[7] [7] F. BREZZI, Sur la méthode des éléments finis hybrides pour le problème biharmonique. Num. Math. 24(1975) 103-131. Zbl0316.65029 MR391538 · Zbl 0316.65029 · doi:10.1007/BF01400961 · eudml:132332
[8] [8] F. BREZZI, On the existence uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. R.A.I.R.O. 8-R2 (1974) 129-151. Zbl0338.90047 MR365287 · Zbl 0338.90047 · eudml:193255
[9] P. G. CIARLET, Quelques méthodes d’éléments finis pour le problème d’une plaque encastrée, Colloque IRIA sur < Méthodes de calcul scientifique et technique > , Roquencourt (Paris) 17-21 déc. 1973. (To appear in Springer Verlag). Zbl0285.65042 MR440954 · Zbl 0285.65042
[10] P. G. CIARLET, Sur l’élément de Clough et Tocher. (To appear). Zbl0306.65070 · Zbl 0306.65070 · eudml:193256
[11] P. G. CIARLET and P. A. RAVIART, La méthode des éléments finis pour les problèmes aux limites elliptiques. (To appear).
[12] P. G. CIARLET and P. A. RAVIART, A mixed finite element method for the biharmonic equation, Symposium on Mathematical Aspect of Finite Elements in P.D.E., University of Wisconsin, Madison, April 01-03, 1974. Zbl0337.65058 · Zbl 0337.65058
[13] P. G. CIARLET and P. A. RAVIART, A nonconforming method for the plate problem. (To appear). · Zbl 0337.65058
[14] P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolation in R n with applications to finite element method, Arch. Rat. Mech. Anal. 46,pp. 177-189, 1972. Zbl0243.41004 MR336957 · Zbl 0243.41004 · doi:10.1007/BF00252458
[15] J. F. CIAVALDINI and J. C. NEDELEC. (To appear).
[16] R. W. CLOUGH and J. L. TOCHER, Finite element stiffness matrices for analysis of plate in bending. Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B., Ohio, 1965.
[17] G. FICHERA, Esistenza del minimo in un classico problema di calcolo delle variazioni, Rend. Acc. Nazionale Lincei, s. VIII, v. XI, fasc. 1-2, pp. 34-39, 1951. Zbl0054.04303 MR46588 · Zbl 0054.04303
[18] G. FICHERA, Linear elliptic differential systems and eigenvalue problems, Lecture Notes, Springer Verlag, Berlin. 1965. Zbl0138.36104 MR209639 · Zbl 0138.36104 · doi:10.1007/BFb0079959
[19] B. FRAEIJS DE VEUBEKE, Displacements and equilibrium models in the finite element method, Stress Analysis (éd. by O. C. Zienkiewicz and G. S. Holister), chap. 9, Wiley, 1964. · Zbl 0131.22903
[20] B. FRAEIJS DE VEUBEKE, Bending and stretching of plates, Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B., Ohio, 1965. · Zbl 0168.22602
[21] B. FRAEIJS DE VEUBEKE, Variational principles and the patch test. (To appear on Internat. J. Numer. Methods Engrg., 8, 783-801, 1974. Zbl0284.73043 MR375911 · Zbl 0284.73043 · doi:10.1002/nme.1620080408
[22] B. FRAEIJS DE VEUBEKE and O. C. ZIENKIEWICZ, Strain-energy bounds in finite-element analysis by slab analogy, Journal of strain analysis, Vol. 2 N. 4, 1967.
[23] R. GLOWINSKI, Approximations externes, par éléments finis de Lagrange d’ordre un et deux, du problème de Dirichlet pour l’opérateur biharmonique. Méthode itérative de résolution des problèmes approchés, Conference on Numerical Analysis, Royal Irish Academy, 1972. Zbl0277.35003 · Zbl 0277.35003
[24] B. M. IRONS and A. RAZZAQUE, Experience with the patch test for convergence of finite elements, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), pp. 557-587, Academic Press, New York, 1972. Zbl0279.65087 MR423839 · Zbl 0279.65087
[25] [25] C. JOHNSON, On the convergence ofsome mixed finite element methods inplate bending problems, Num. Math, 21 (1),43-62 (1973). Zbl0264.65070 MR388807 · Zbl 0264.65070 · doi:10.1007/BF01436186 · eudml:132212
[26] C. JOHNSON, Convergence of another mixed finite element method for plate bending problems, Report N. 27, Department of Mathematics, Chalmers Institute of Technology and the University of Goteborg, 1972.
[27] P. LASCAUX and P. LESAINT, Convergence de certains éléments finis non conformes pour le problème de la flexion des plaques minces. (To appear).
[28] J. L. LIONS and E. MAGENES, Non homogeneous boundary value problems and applications, I, II, Grund. B. 181-182, Springer-Berlin, 1970. Zbl0227.35001 · Zbl 0227.35001
[29] B. MERCIER, Numerical solution of the biharmonic problem by mixed finite elements of class C^\circ . Boll U.M.I., 4, 10, 1974. Zbl0332.65058 MR378442 · Zbl 0332.65058
[30] J. T. ODEN, Some contributions to the mathematical theory of mixed finite element approximations, Tokyo Seminar on Finite Elements, 1973. Zbl0374.65060 · Zbl 0374.65060
[31] T. H. H. PIAN, Hybrid Models, Int. Symp. on Numerical and Computer Methods in Structural Mechanics, Urbana, Illinois, Sept. 1971.
[32] T. H. H. PIAN, Finite element formulation by variational principles with relaxed continuity requirements, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), Academic Press, New York, 1972. Zbl0274.65033 MR413552 · Zbl 0274.65033
[33] T. H. H. PIAN and P. TONG, Basis of finite element methods for solid continua, Internat. J. Numer. Methods Engrg, Vol. I, 3-28, 1969. Zbl0252.73052 · Zbl 0252.73052 · doi:10.1002/nme.1620010103
[34] T. H. H. PIAN and P. TONG, A variational principle and the convergence of a finite element method based on assumed stress distribution, Int. J. Solids & Struct. 5, pp. 463-472, 1969. Zbl0167.52805 · Zbl 0167.52805 · doi:10.1016/0020-7683(69)90036-5
[35] T. H. H. PIAN and P. TONG, Rationalization in Deriving element stiffness Matrix by assumed stress approach, Proceedings Second Conf. on Matrix Methods in Structural Mechanics, FFDL TR-68-150. Wright Patterson, AFB, Ohio, pp. 441-469, 1968.
[36] P. A. RAVIART, Cours de troisième cycle, de l’Université de Paris VI, 1971-1972.
[37] P. A. RAVIART, Hybrid finite element methods for solving 2nd order elliptic equations. Conference on Numerical Analysis, Royal Irish Academy, Dublin, July 29-August 2, 1974. Zbl0339.65061 · Zbl 0339.65061
[38] P. A. RAVIART and J. M. THOMAS, Hybrid finite element methods and 2nd order elliptic problems. (To appear.) · Zbl 0364.65082
[39] G. SANDER, Applications de la méthode des éléments finis à la flexion des plaques, Université de Liège, Fac. de Sci. Appl., Pubblic. N. 15, 1969.
[40] [40] G. STRANG, Approximation in the finite element method, Numer. Math., 19, pp. 81-98, 1972. Zbl0221.65174 MR305547 · Zbl 0221.65174 · doi:10.1007/BF01395933 · eudml:132133
[41] G. STRANG, Variational Crimes in the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), pp. 689-710, Academic Press, NewYork, 1972. Zbl0264.65068 MR413554 · Zbl 0264.65068
[42] G. STRANG and G. FIX, An Analysis of the Finite Element Method, Prentice Hall Englewood Cliffs, 1973. Zbl0356.65096 MR443377 · Zbl 0356.65096
[43] L. TARTAR. (To appear.)
[44] S. TIMOSCHENKO, Theory of Plates and Shells, McGraw-Hill, New York, 1959. JFM66.1049.02 · JFM 66.1049.02
[45] J. M. THOMAS. (To appear.)
[46] O. C. ZIENKIEWICZ, The finite element method in engineering Science, McGraw-Hill, London, 1971. Zbl0237.73071 MR315970 · Zbl 0237.73071
[47] [47] M. ZLAMAL, On the finite element method, Numer. Math., 12, pp. 394-409, 1968. Zbl0176.16001 MR243753 · Zbl 0176.16001 · doi:10.1007/BF02161362 · eudml:131885
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.