zbMATH — the first resource for mathematics

A remark on the rational points of Abelian varieties with values in cyclotomic \(\mathbb{Z}_p\)- extensions. (English) Zbl 0323.14010

14G05 Rational points
14K15 Arithmetic ground fields for abelian varieties
11R18 Cyclotomic extensions
Full Text: DOI
[1] K. Iwasawa: On f-extensions of algebraic number fields. Bull. Amer. Math. Soc, 65, 183-226 (1959). · Zbl 0089.02402
[2] Ju. Manin: Cyclotomic fields and modular curves. Russ. Math. Surveys, 26,7-78 (1971). · Zbl 0266.14012
[3] B. Mazur: Rational points of abelian varieties with values in towers of number fields. Inventiones math., 18, 183-266 (1972). · Zbl 0245.14015
[4] D. Mumford: Abelian Varieties. Oxford Univ. Press, London (1970). · Zbl 0223.14022
[5] S. Sen: Lie algebras of Galois groups arising from Hodge-Tate modules. Ann. of Math., 07, 160-170 (1973). JSTOR: · Zbl 0258.12009
[6] J.-P. Serre: Abelian i-adic representations and elliptic curves. Benjamin Inc. New York (1968). · Zbl 0186.25701
[7] J.-P. Serre: Sur les groupes de Galois attaches aux groupes p-divisibles. Proceedings of a Conference on Local Fields, pp. 118-131. Springer, Berlin-Heidelberg-New York (1967). · Zbl 0189.02901
[8] J.-P. Serre and J. Tate: Good reduction of abelian varieties. Ann. of Math., 88, 492-517 (1968). JSTOR: · Zbl 0172.46101
[9] J. Tate: p-Divisible Groups. Proceedings of a Conference on Local Fields, pp. 158-183. Springer, Berlin-Heidelberg-New York (1967). · Zbl 0157.27601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.