×

Representations of solvable Lie algebras. II: Twisted group rings. (English) Zbl 0323.17006


MSC:

17B35 Universal enveloping (super)algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
16S34 Group rings
16P10 Finite rings and finite-dimensional associative algebras
17B30 Solvable, nilpotent (super)algebras
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] H. CARTAN and S. EILENBERG , Homological Algebra , Princeton, 1956 . MR 17,1040e | Zbl 0075.24305 · Zbl 0075.24305
[2] G. HOCHSCHILD , Lie Algebras and Differenciations in Rings of Power Series (Amer. J. Math., vol. 72, 1950 , pp. 58-80). MR 11,317e | Zbl 0035.01805 · Zbl 0035.01805
[3] E. MATLIS , Modules with Descending Chain Condition (Trans. Amer. Math. Soc., vol. 97, 1960 , pp. 495-508). MR 30 #122 | Zbl 0094.25203 · Zbl 0094.25203
[4] J. C. MC CONNELL , Representations of Solvable Lie Algebras and the Gelfand-Kirillov Conjecture (To appear in Proc. London Math. Soc., vol. 3, n^\circ 29, 1974 , pp. 453-484). MR 50 #9997 | Zbl 0323.17005 · Zbl 0323.17005
[5] J. C. MCCONNELL and M. SWEEDLER , Simplicity of Smash Products (Proc. London Math. Soc., vol. 3, n^\circ 23, 1971 , pp. 251-266). MR 44 #6795 | Zbl 0221.16009 · Zbl 0221.16009
[6] Y. NOUAZÉ and P. GABRIEL , Idéaux premiers de l’algèbre enveloppante d’une algèbre de Lie nilpotente (J. of Algebra, vol. 6, 1967 , pp. 77-99). MR 34 #5889 | Zbl 0159.04101 · Zbl 0159.04101
[7] D. REES , A Theorem of Homological Algebra (Proc. Cambridge Phil. Soc., vol. 52, 1956 , pp. 605-610). MR 18,277g | Zbl 0072.02701 · Zbl 0072.02701
[8] R. RENTSCHLER and P. GABRIEL , Sur la dimension des anneaux et ensembles ordonnés (C. R. Acad. Sc., Paris, t. 265, série A, 1967 , p. 712-715). MR 37 #243 | Zbl 0155.36201 · Zbl 0155.36201
[9] M. SWEEDLER , Hopf Algebras , W. A. Benjamin, New York, 1969 . Zbl 0194.32901 · Zbl 0194.32901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.