×

zbMATH — the first resource for mathematics

Natural anadeses and catadeses. (English) Zbl 0323.18003

MSC:
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
18C15 Monads (= standard construction, triple or triad), algebras for monads, homology and derived functors for monads
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] Bastiani-Ehresmann , Categories of sketched structures , Cahiers de Topo. et Géom. Diff. XIII - 2 ( 1972 ) . Numdam | Zbl 0263.18009 · Zbl 0263.18009
[2] J. Beck , Distributive laws , Lecture Notes 80 , Springer ( 1968 ) . MR 241502 | Zbl 0186.02902 · Zbl 0186.02902
[3] D. Bourn , Sur les triples structurés , Cahiers Topo. et Géom. Diff. XIII - 4 ( 1972 ). Numdam | MR 304454 | Zbl 0285.18005 · Zbl 0285.18005
[4] D. Bourn , Objets de Kleisli et d’E-M dans une 2-catégorie (thèse 3e cycle, Paris 1973 ), Esquisses mathématiques 19 , Paris . MR 354807 | Zbl 0345.18005 · Zbl 0345.18005
[5] A. Burroni , T-catégories , Cahiers Topo. et Géom. Diff. XII - 3 ( 1971 ). Numdam | Zbl 0246.18007 · Zbl 0246.18007
[6] C. Ehresmann , Catégories et structures , Dunod , Paris , 1965 . MR 213410 | Zbl 0192.09803 · Zbl 0192.09803
[7] C. Ehresmann , Catégories structurées généralisées , Cahiers Topo. et Géom. Diff. X - 1 ( 1968 ). Numdam | MR 244337
[8] J. Gray , The categorical Comprehension scheme , Lecture Notes 99 , Springer ( 1969 ). MR 249483 · Zbl 0211.03403
[9] J. Gray , Lecture Notes 195 , Springer ( 1970 ) ( and lectures at the Ehresmann’s Seminar, Paris , 1970 , written by P. Leroux ) .
[10] S. Mac Lane , Homology , Springer , 1963 . MR 1344215 | Zbl 0818.18001 · Zbl 0818.18001
[11] R. Street , Two Constructions on Lax Functors , Cahiers Topo. et Géom. Diff. XIII - 3 ( 1972 ) . Numdam | MR 347936 | Zbl 0252.18008 · Zbl 0252.18008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.