×

zbMATH — the first resource for mathematics

Oscillation of solutions of nonlinear delay differential equations. (English) Zbl 0323.34060
MSC:
34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] КИГУРАДЗЕ И. Т.: К вопросу колеблемости решений нелинейных дифференциальных уравнений. Дифф. уравнения 8, 1965, 999-1006. · Zbl 0314.35045
[2] KUSANO T., ONOSE H.: Oscillation of Solutions of Nonlinear Differential Delay Equations of Arbitrary Order. Hiroshima Math. J. 1, 1972, 1-13. · Zbl 0269.34064
[3] LADAS G.: Oscillation and Asymptotic Behavior of Solutions of Differential Equations with Retarded Argument. J. diff. Equations 10, 1971, 281-290. · Zbl 0216.12002
[4] LIČKO I., ŠVEC M.: Le caractére oscillatoire des solutions de l’équation \(y^{(n)}+f(x)y^{\alpha }=0\), \(n>1\). Czech. Math. J. 13, 1963, 481-491. · Zbl 0123.28202
[5] MARUŠIAK P.: Note on the Ladas Paper on Oscillation and Asymptotic Behavior of Solutions of Differential Equations with Retarded Argument. J. diff. Equation 1, 1973, 450-456.
[6] MARUŠIAK P.: Oscillation of Solutions of the Delay Differential Equation \(y^{(2n)}(t)+\sum^m_{i=1}p_i(t) f_j(y[h_i(t)])=0\),  \(n\geq 1\). Čas. Pěst. Mat. 1, 1974, 131-141.
[7] ONOSE H.: Some Oscillation Criteria for n-th Order Nonlinear Delay-Differential Equations. Hiroshima Math. J. 2, 1971, 171-176. · Zbl 0282.34050
[8] STAIKOS V. A., SFICAS Y. G.: Oscillatory and Asymptotic Behavior of Functional Differential Equations. J. diff. Equations 3, 1972, 426-437. · Zbl 0247.34076
[9] ШЕВЕЛО. В. Н., ВАРЕХ И. В.: О некоторых свойствах решний дифференциальных уравнений с запаздыванием. Укр. Мат. Ж. 6, 1972, 807-813. · Zbl 1156.34335
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.