×

zbMATH — the first resource for mathematics

On B-convex Banach spaces. (English) Zbl 0323.46018

MSC:
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
47A15 Invariant subspaces of linear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albert Baernstein II, On reflexivity and summability,Studia Math. 42 (1972), 91–94.
[2] S. Banach andS. Saks, Sur la covergence forte dans les champsL v ,Studia Math. 2 (1930), 51–57. · JFM 56.0932.01
[3] Anatole Beck, A convexity condition in Banach spaces and the strong law of large numbers,Proc. Amer. Math. Soc. 13 (1962), 329–334. · Zbl 0108.31401 · doi:10.1090/S0002-9939-1962-0133857-9
[4] D. R. Brown,B-convexity in Banach spaces, Ph.D. Thesis, Ohio State University, 1970. · Zbl 0197.49502
[5] A. Brunel, Sur les ensembles bornés dans les chaînes de Markov, to appear.
[6] M. M. Day,Normed Linear Spaces, Academic Press, New York, 1962. · Zbl 0100.10802
[7] N. Dunford andJ. T. Schwartz,Linear Operators, I, Interscience, New York, 1958.
[8] Daniel P. Giesy, On a convexity condition in normed linear spaces,Trans. Amer. Math. Soc. 125 (1966), 114–146. · Zbl 0183.13204 · doi:10.1090/S0002-9947-1966-0205031-7
[9] R. C. James, Bases and reflexivity of Banach spaces,Ann. of Math. (2) 52 (1950), 518–522. · Zbl 0039.12202 · doi:10.2307/1969430
[10] R. C. James, Uniformly non-square Banach spaces,Ann. of Math. 80 (1964), 542–550. · Zbl 0132.08902 · doi:10.2307/1970663
[11] S. Kakutani, Weak convergence in uniformly convex spaces,Tôhoku Math. J. 45 (1938), 188–193. · Zbl 0020.03201
[12] Joram Lindenstrauss, Some aspects of the theory of Banach spaces,Advances in Math. X (1970), 159–180. · Zbl 0203.12002 · doi:10.1016/0001-8708(70)90032-0
[13] T. Nishiura andD. Waterman, Reflexivity and summability,Studia Math. 23 (1963), 53–57.
[14] L. Sucheston, On sequences of events of which probabilities admit a positive lower limit,J. London Math. Soc. 79 (1959), 386–394. · Zbl 0092.35103 · doi:10.1112/jlms/s1-34.4.386
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.