×

Topology and logic as a source of algebra. (English) Zbl 0324.55001


MSC:

55-02 Research exposition (monographs, survey articles) pertaining to algebraic topology
06-02 Research exposition (monographs, survey articles) pertaining to ordered structures
12G99 Homological methods (field theory)
12F05 Algebraic field extensions
18-02 Research exposition (monographs, survey articles) pertaining to category theory
20J06 Cohomology of groups
18G15 Ext and Tor, generalizations, Künneth formula (category-theoretic aspects)
55U20 Universal coefficient theorems, Bockstein operator
57T30 Bar and cobar constructions
15A69 Multilinear algebra, tensor calculus
20J05 Homological methods in group theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Richard F. Arens, Operations induced in conjugate spaces, Proc. Internat. Congr. of Math. (Cambridge, Mass., 1950), vol. I, Amer. Math. Soc., Providence, R.I., 1952, pp. 532-533.
[2] Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839 – 848. · Zbl 0044.32601
[3] Richard Arens, Operations induced in function classes, Monatsh. Math. 55 (1951), 1 – 19. · Zbl 0042.35601 · doi:10.1007/BF01300644
[4] M. Artin, A. Grothendieck and J. L. Verdier, La théorie des topos et cohomologie étale des schémas (SGA 4), vols. I, II, III, (Séminaire de géométrie algébrique du Bois-Marie 1963/64), Lecture Notes in Math., vols. 269, 270, 305, Springer-Verlag, Berlin, Heidelberg and New York, 1972, 1973.
[5] Reinhold Baer, Erweiterung von Gruppen und ihren Isomorphismen, Math. Z. 38 (1934), no. 1, 375 – 416 (German). · Zbl 0009.01101 · doi:10.1007/BF01170643
[6] Michael Barr, Cohomology and obstructions: Commutative algebras, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), Springer, Berlin, 1969, pp. 357 – 375.
[7] Hyman Bass, Algebraic \?-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. · Zbl 0174.30302
[8] N. Bourbaki, Éléments de mathématique. XI. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre IV: Polynomes et fractions rationnelles. Chapitre V: Corps commutatifs, Actualités Sci. Ind., no. 1102, Hermann et Cie., Paris, 1950 (French). · Zbl 0041.36701
[9] H. Cartan, Séminaire Henri Cartan de l’École Normale Supérieure, 1954/1955, Algèbres d’Eilenberg-Mac Lane et homotopie, Secrétariat mathématique, Paris, 1955. MR 19, 438.
[10] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. · Zbl 0075.24305
[11] E. Čech, Les groupes de Betti d’un complex infinie, Fund. Math. 25 (1935), 33-44. · Zbl 0011.27203
[12] G. J. Decker, The integral homology algebra of an Eilenberg-Mac Lane space, Thesis, Univ. of Chicago, Chicago, 1974.
[13] J. Duskin, \?(\?,\?)-torsors and the interpretation of ”triple” cohomology, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2554 – 2557. · Zbl 0288.18013
[14] J. Duskin, Simplicial methods and the interpretation of ”triple” cohomology, Mem. Amer. Math. Soc. 3 (1975), no. issue 2, 163, v+135. · Zbl 0376.18011
[15] Eldon Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35 – 88. · Zbl 0119.18206 · doi:10.2307/2372804
[16] Beno Eckmann, Der Cohomologie-Ring einer beliebigen Gruppe, Comment. Math. Helv. 18 (1946), 232 – 282 (German). · Zbl 0061.40705 · doi:10.1007/BF02568113
[17] Samuel Eilenberg, Singular homology theory, Ann. of Math. (2) 45 (1944), 407 – 447. · Zbl 0061.40603 · doi:10.2307/1969185
[18] Samuel Eilenberg, Automata, languages, and machines. Vol. A, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974. Pure and Applied Mathematics, Vol. 58. Samuel Eilenberg, Automata, languages, and machines. Vol. B, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. With two chapters (”Depth decomposition theorem” and ”Complexity of semigroups and morphisms”) by Bret Tilson; Pure and Applied Mathematics, Vol. 59.
[19] Samuel Eilenberg and G. M. Kelly, A generalization of the functorial calculus, J. Algebra 3 (1966), 366 – 375. · Zbl 0146.02501 · doi:10.1016/0021-8693(66)90006-8
[20] S. Eilenberg and S. Mac Lane, Group extensions and homology, Ann. of Math. (2) 43 (1942), 757-831. MR 4, 88. · Zbl 0061.40602
[21] Samuel Eilenberg and Saunders MacLane, Natural isomorphisms in group theory, Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 537 – 543. · Zbl 0061.09203
[22] Samuel Eilenberg and Saunders MacLane, Relations between homology and homotopy groups, Proc. Nat. Acad. Sci. U. S. A. 29 (1943), 155 – 158. · Zbl 0061.40701
[23] Samuel Eilenberg and Saunders MacLane, General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231 – 294. · Zbl 0061.09204
[24] Samuel Eilenberg and Saunders MacLane, Relations between homology and homotopy groups of spaces, Ann. of Math. (2) 46 (1945), 480 – 509. · Zbl 0061.40702 · doi:10.2307/1969165
[25] S. Eilenberg and S. Mac Lane, Homology of spaces with operators. II, Trans. Amer. Math. Soc. 65 (1949), 49-99. MR 11, 379. · Zbl 0034.11101
[26] Samuel Eilenberg and Saunders MacLane, Relations between homology and homotopy groups of spaces. II, Ann. of Math. (2) 51 (1950), 514 – 533. · Zbl 0036.12602 · doi:10.2307/1969365
[27] S. Eilenberg and S. Mac Lane, Acyclic models, Amer. J. Math. 75 (1953), 189-199. MR 14, 670. · Zbl 0050.17205
[28] Samuel Eilenberg and Saunders Mac Lane, On the groups of \?(\Pi ,\?). I, Ann. of Math. (2) 58 (1953), 55 – 106. · Zbl 0050.39304 · doi:10.2307/1969820
[29] Samuel Eilenberg and Saunders Mac Lane, On the groups \?(\Pi ,\?). II. Methods of computation, Ann. of Math. (2) 60 (1954), 49 – 139. · Zbl 0055.41704 · doi:10.2307/1969702
[30] Samuel Eilenberg and Saunders Mac Lane, On the groups \?(\Pi ,\?). II. Methods of computation, Ann. of Math. (2) 60 (1954), 49 – 139. · Zbl 0055.41704 · doi:10.2307/1969702
[31] Samuel Eilenberg and J. A. Zilber, Semi-simplicial complexes and singular homology, Ann. of Math. (2) 51 (1950), 499 – 513. · Zbl 0036.12601 · doi:10.2307/1969364
[32] Calvin C. Elgot, Monadic computation and iterative algebraic theories, Logic Colloquium ’73 (Bristol, 1973) North-Holland, Amsterdam, 1975, pp. 175 – 230. Studies in Logic and the Foundations of Mathematics, Vol. 80. · Zbl 0327.02040
[33] D. B. A. Epstein, Functors between tensored categories, Invent. Math. 1 (1966), 221 – 228. , https://doi.org/10.1007/BF01452242 Hans Freudenthal, Der Einfluss der Fundamentalgruppe auf die Bettischen Gruppen, Ann. of Math. (2) 47 (1946), 274 – 316 (German). · Zbl 0061.40706 · doi:10.2307/1969247
[34] Peter Freyd, Abelian categories. An introduction to the theory of functors, Harper’s Series in Modern Mathematics, Harper & Row, Publishers, New York, 1964. · Zbl 0121.02103
[35] Peter Freyd, Aspect of topoi, Bull. Austral. Math. Soc. 7 (1972), 1 – 76. · Zbl 0252.18001 · doi:10.1017/S0004972700044828
[36] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. · Zbl 0186.56802
[37] G. Gentzen, Untersuchungen über das logische Schliessen. I, II, Math. Z. 39 (1934), 176-210, 405-431. · Zbl 0010.14501
[38] Murray Gerstenhaber, On the deformation of rings and algebras. II, Ann. of Math. 84 (1966), 1 – 19. · Zbl 0147.28903 · doi:10.2307/1970528
[39] S. I. Goldberg, Extensions of Lie algebras and the third cohomology group, Canadian J. Math. 5 (1953), 470-476. · Zbl 0051.02303
[40] Monique Hakim, Topos annelés et schémas relatifs, Springer-Verlag, Berlin-New York, 1972 (French). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 64.
[41] R. Hamsher, Eilenberg-Mac Lane algebras and their computation, Thesis, Univ. of Chicago, Chicago, Ill., 1973.
[42] G. Hochschild, Cohomology classes of finite type and finite dimensional kernels for Lie algebras, Amer. J. Math. 76 (1954), 763 – 778. · Zbl 0057.27204 · doi:10.2307/2372650
[43] G. Hochschild, Lie algebra kernels and cohomology, Amer. J. Math. 76 (1954), 698 – 716. · Zbl 0055.26601 · doi:10.2307/2372712
[44] Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257 – 309 (German). · Zbl 0027.09503 · doi:10.1007/BF02565622
[45] Heinz Hopf, Relations between the fundamental group and the second Betti group, Lectures in Topology, University of Michigan Press, Ann Arbor, Mich., 1941, pp. 315 – 316. · Zbl 0063.02066
[46] Heinz Hopf, Nachtrag zu der Arbeit Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 15 (1943), 27 – 32 (German). · Zbl 0027.09504 · doi:10.1007/BF02565629
[47] Heinz Hopf, Über die Bettischen Gruppen, die zu einer beliebigen Gruppe gehören, Comment. Math. Helv. 17 (1945), 39 – 79 (German). · Zbl 0061.40703 · doi:10.1007/BF02566234
[48] Daniel M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294 – 329. · Zbl 0090.38906
[49] Daniel M. Kan, A combinatorial definition of homotopy groups, Ann. of Math. (2) 67 (1958), 282 – 312. · Zbl 0091.36901 · doi:10.2307/1970006
[50] G. M. Kelly, On MacLane’s conditions for coherence of natural associativities, commutativities, etc, J. Algebra 1 (1964), 397 – 402. · Zbl 0246.18008 · doi:10.1016/0021-8693(64)90018-3
[51] G. M. Kelly and S. Mac Lane, Coherence in closed categories, J. Pure Appl. Algebra 1 (1971), no. 1, 97 – 140. · Zbl 0212.35001 · doi:10.1016/0022-4049(71)90013-2
[52] G. M. Kelly and Saunders MacLane, Closed coherence for a natural transformation, Coherence in categories, Springer, Berlin, 1972, pp. 1 – 28. Lecture Notes in Math., Vol. 281.
[53] A. Kock and G. C. Wraith, Elementary toposes, Matematisk Institut, Aarhus Universitet, Aarhus, 1971. Lecture Notes Series, No. 30. · Zbl 0251.18015
[54] Joachim Lambek, Deductive systems and categories. I. Syntactic calculus and residuated categories, Math. Systems Theory 2 (1968), 287 – 318. · Zbl 0176.28901 · doi:10.1007/BF01703261
[55] Joachim Lambek, Deductive systems and categories. II. Standard constructions and closed categories, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, pp. 76 – 122.
[56] Klaus Lamotke, Semisimpliziale algebraische Topologie, Die Grundlehren der mathematischen Wissenschaften, Band 147, Springer-Verlag, Berlin-New York, 1968 (German). · Zbl 0188.28301
[57] F. William Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869 – 872. · Zbl 0119.25901
[58] F. William Lawvere, An elementary theory of the category of sets, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1506 – 1511. · Zbl 0141.00603
[59] F. William Lawvere, Introduction, Toposes, algebraic geometry and logic (Conf., Dalhousie Univ., Halifax, N.S., 1971) Springer, Berlin, 1972, pp. 1 – 12. Lecture Notes in Math., Vol. 274.
[60] Saunders MacLane, Some Interpretations of Abstract Linear Dependence in Terms of Projective Geometry, Amer. J. Math. 58 (1936), no. 1, 236 – 240. · Zbl 0013.19503 · doi:10.2307/2371070
[61] Saunders Mac Lane, A lattice formulation for transcendence degrees and \?-bases, Duke Math. J. 4 (1938), no. 3, 455 – 468. · JFM 64.0072.02 · doi:10.1215/S0012-7094-38-00438-7
[62] Saunders Mac Lane, The uniqueness of the power series representation of certain fields with valuations, Ann. of Math. (2) 39 (1938), no. 2, 370 – 382. · Zbl 0019.04901 · doi:10.2307/1968793
[63] Saunders Mac Lane, Modular fields. I. Separating transcendence bases, Duke Math. J. 5 (1939), no. 2, 372 – 393. · Zbl 0021.10102 · doi:10.1215/S0012-7094-39-00532-6
[64] Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23 – 45. · Zbl 0021.38903
[65] Saunders Mac Lane, Subfields and automorphism groups of \?-adic fields, Ann. of Math. (2) 40 (1939), no. 2, 423 – 442. · Zbl 0021.00501 · doi:10.2307/1968931
[66] Saunders MacLane, Note on the relative structure of \?-adic fields, Ann. of Math. (2) 41 (1940), 751 – 753. · Zbl 0025.10404 · doi:10.2307/1968854
[67] Saunders MacLane, Modular fields, Amer. Math. Monthly 47 (1940), 259 – 274. · Zbl 0023.19804 · doi:10.2307/2302685
[68] Saunders MacLane, The homology products in \?(\Pi ,\?), Proc. Amer. Math. Soc. 5 (1954), 642 – 651. · Zbl 0059.16405
[69] Saunders Mac Lane, Extensions and obstructions for rings, Illinois J. Math. 2 (1958), 316 – 345. · Zbl 0081.03303
[70] S. Mac Lane, Locally small categories and the foundations of set theory, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw, 1961, pp. 25 – 43.
[71] Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. · Zbl 0818.18001
[72] Studies in modern algebra, Studies in Mathematics, Vol. 2, Published by The Mathematical Association of America; distributed by Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. · Zbl 0192.00102
[73] Saunders Mac Lane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963), no. 4, 28 – 46. · Zbl 0244.18008
[74] Reports of the Midwest Category Seminar. IV, Edited by S. MacLane. Lecture Notes in Mathematics, Vol. 137, Springer-Verlag, Berlin-New York, 1970. · Zbl 0198.00201
[75] Saunders Mac Lane, The Milgram bar construction as a tensor product of functors, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio,1970), Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 135 – 152. · Zbl 0216.45405
[76] Saunders MacLane, Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 5. · Zbl 0232.18001
[77] Saunders MacLane, Sets, topoi, and internal logic in categories, Logic Colloquium ’73 (Bristol, 1973) North-Holland, Amsterdam, 1975, pp. 119 – 134. Studies in Logic and the Foundations of Mathematics, Vol. 80. · Zbl 0313.18001
[78] Saunders MacLane and O. F. G. Schilling, Normal algebraic number fields, Trans. Amer. Math. Soc. 50 (1941), 295 – 384. · Zbl 0061.06102
[79] F. K. Schmidt and Saunders MacLane, The generation of inseparable fields, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 583 – 587. · Zbl 0063.06800
[80] Ernest G. Manes, Algebraic theories, Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, No. 26. · Zbl 0353.18007
[81] J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. · Zbl 0769.55001
[82] R. James Milgram, The bar construction and abelian \?-spaces, Illinois J. Math. 11 (1967), 242 – 250. · Zbl 0152.40502
[83] Mitsuya Mori, On the three-dimensional cohomology group of Lie algebras, J. Math. Soc. Japan 5 (1953), 171 – 183. · Zbl 0051.02304 · doi:10.2969/jmsj/00520171
[84] Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. · Zbl 0168.20903
[85] Daniel Quillen, On the cohomology and \?-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552 – 586. · Zbl 0249.18022 · doi:10.2307/1970825
[86] Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265, Springer-Verlag, Berlin-New York, 1972 (French). · Zbl 0241.14008
[87] M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of \?-spaces, Bull. Amer. Math. Soc. 71 (1965), 872 – 875. · Zbl 0132.19201
[88] Jean-Pierre Serre, Cohomologie galoisienne, Cours au Collège de France, vol. 1962, Springer-Verlag, Berlin-Heidelberg-New York, 1962/1963 (French). · Zbl 0145.17501
[89] Umeshachandra Shukla, Cohomologie des algèbres associatives, Ann. Sci. École Norm. Sup. (3) 78 (1961), 163 – 209 (French). · Zbl 0228.18005
[90] James Dillon Stasheff, Homotopy associativity of \?-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292; ibid. 108 (1963), 293 – 312. · Zbl 0114.39402
[91] N. E. Steenrod, Milgram’s classifying space of a topological group, Topology 7 (1968), 349 – 368. · Zbl 0177.51601 · doi:10.1016/0040-9383(68)90012-8
[92] D. P. Sullivan, Geometric topology, part 1, Localization, periodicity, and Galois symmetry, Mimeographed notes, M.I.T., Cambridge, Mass., 1970.
[93] John Tate, The higher dimensional cohomology groups of class field theory, Ann. of Math. (2) 56 (1952), 294 – 297. · Zbl 0047.03703 · doi:10.2307/1969801
[94] O. Teichmüller, p-Algebren, Deutsche Math. 1 (1936), 362-388. · JFM 62.0101.03
[95] O. Teichmüller, Diskret bewertete perfekte Körper mit unvollkommenem Restklassenkörper, J. Reine Angew Math. 176 (1936), 141-152. · Zbl 0016.05103
[96] O. Teichmüller, Über die sogenannte nichtkommutative Galoissche Theorie und die Relation \(\xi_ {{\l}ambda,\mu ,\nu}\xi_ {{\l}ambda,\mu \nu,\pi}\xi^ {{\l}ambda}_ {\mu ,\nu,\pi}=\xi_ {{\l}ambda,\mu ,\nu \pi}\xi_ {{\l}ambda,\mu ,\nu,\pi}\), Deutsche Math. 5 (1940), 138-149. MR 2, 122. · Zbl 0023.19805
[97] O. Veblen, Analysis situs, 2nd ed., Amer. Math. Soc. Colloq. Publ., vol. 5, part II, Amer. Math. Soc., Providence, R. I., 1931. · Zbl 0001.40604
[98] Rodiani Voreadou, A coherence theorem for biclosed categories, Eleutheria (1978), 103 – 150. Rodiani Voreadou, Coherence in biclosed categories, Eleutheria (1978), 156 – 181.
[99] R. Voreadou, Non-commutative diagrams in closed categories (to appear). · Zbl 0347.18008
[100] André Weil, Foundations of Algebraic Geometry, American Mathematical Society Colloquium Publications, vol. 29, American Mathematical Society, New York, 1946. · Zbl 0063.08198
[101] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51 – 110. · Zbl 0037.26101 · doi:10.2307/1969511
[102] Hassler Whitney, On the Abstract Properties of Linear Dependence, Amer. J. Math. 57 (1935), no. 3, 509 – 533. · Zbl 0012.00404 · doi:10.2307/2371182
[103] Hassler Whitney, The maps of an \?-complex into an \?-sphere, Duke Math. J. 3 (1937), no. 1, 51 – 55. · Zbl 0016.22901 · doi:10.1215/S0012-7094-37-00306-5
[104] Hassler Whitney, Tensor products of Abelian groups, Duke Math. J. 4 (1938), no. 3, 495 – 528. · Zbl 0019.39802 · doi:10.1215/S0012-7094-38-00442-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.