Getoor, R. K.; Sharpe, M. J. Balayage and multiplicative functionals. (English) Zbl 0324.60061 Z. Wahrscheinlichkeitstheor. Verw. Geb. 28, 139-164 (1974). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 8 Documents MSC: 60J55 Local time and additive functionals PDFBibTeX XMLCite \textit{R. K. Getoor} and \textit{M. J. Sharpe}, Z. Wahrscheinlichkeitstheor. Verw. Geb. 28, 139--164 (1974; Zbl 0324.60061) Full Text: DOI References: [1] Benveniste, A., Jacod, J.: Projection des fonctionnelles additives et représentation des potentiels d’un processus de Markov. To appear · Zbl 0258.60054 [2] Blumenthal, R. M.; Getoor, R. K., Markov Processes and Potential Theory (1968), New York: Academic Press, New York · Zbl 0169.49204 [3] Dellacherie, C., Capacités et Processus Stochastiques (1972), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0246.60032 [4] Getoor, R. K.; Sharpe, M. J., Last exit times and additive functionals, Ann. Probab., 1, 550-569 (1973) · Zbl 0324.60062 [5] Getoor, R. K.; Sharpe, M. J., Last exit decompositions and distributions, Indiana Univ. Math. J., 23, 377-404 (1973) · Zbl 0314.60055 [6] Meyer, P. A., Probability and Potentials (1966), Boston: Ginn (Blaisdell), Boston · Zbl 0138.10401 [7] Meyer, P.A.: Ensembles aléatoires Markoviens homogènes II. To appear in Strasbourg Probability Seminar VIII, 1972-73 [8] Meyer, P. A., Processus de Markov, Vol. 26, Lecture Notes in Math (1967), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0189.51403 [9] Meyer, P. A.; Walsh, J. B., Quelques applications des résolvantes de Ray, Invent. math., 14, 143-166 (1971) · Zbl 0224.60037 [10] Walsh, J. B., The perfection of multiplicative functionals, Vol. 258, Lecture Notes in Math, 215-232 (1972), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0241.60061 [11] Azéma, J., Quelques applications de la théorie générale des processus. I., Invent. math., 18, 293-336 (1972) · Zbl 0268.60068 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.