×

zbMATH — the first resource for mathematics

A general solution for the complete Richards function. (English) Zbl 0324.92006

MSC:
92B05 General biology and biomathematics
34A05 Explicit solutions, first integrals of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Verhulst, P.-F., Notice sur la loi que la population dans son accroissement, Corresp. math. et physique, 10, 113-121, (1838)
[2] Nielsen, A.E., Kinetics of precipitation, (1964), Pergamon Oxford
[3] Blumberg, A.A., Logistic growth rate functions, J. theor. biol., 21, 42-44, (1968)
[4] Chapman, D.G., Statistical problems in dynamics of exploited fisheries populations, Proc. 4th Berkeley symp. math. stat. probab., 153-168, (1960)
[5] von Bertalanffy, L., Untersuchungen über die gesetzlichkeit des wachstums VII. stoffwechseltypen und wachstumtypen, Biol. zentralbl., 61, 510-532, (1941)
[6] Richards, F.J., A flexible growth function for empirical use, J. exp. bot., 10, 290-300, (1959)
[7] Nelder, J.A., The Fitting of a generalization of the logistic curve, Biometrics, 17, 89-110, (1961) · Zbl 0099.14303
[8] Pella, J.J.; Tomlinson, P.K., A generalized stock production model, Bull. inter-am. trop. tuna comm., 13, 421-458, (1969)
[9] Causton, D.R., A computer program for Fitting the Richards function, Biometrics, 25, 401-409, (1969)
[10] Fletcher, R.I., The quadric law of damped exponential growth, Biometrics, 30, 111-124, (1974) · Zbl 0276.92026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.