×

zbMATH — the first resource for mathematics

Oriented matroids. (English) Zbl 0325.05019

MSC:
05B35 Combinatorial aspects of matroids and geometric lattices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bland, R. G.: Doctoral dissertation. (1974)
[2] Crapo, H. H.; Rota, G. -C: On the foundations of combinatorial theory: combinatorial geometries. (1969) · Zbl 0216.02101
[3] Davis, C.: Theory of positive linear dependence. Amer. J. Math. 76, 733-746 (1954) · Zbl 0058.25201
[4] J. Folkman, unpublished notes.
[5] Grünbaum, B.: Convex polytopes. (1967) · Zbl 0163.16603
[6] Grünbaum, B.: Arrangements and spreads. (1972) · Zbl 0249.50011
[7] Halsey, E.: Doctoral dissertation. (1971)
[8] Klee, V.: The greedy algorithm for finitary and cofinitary matroids. Amer. math. Soc. 19, 137-152 (1971) · Zbl 0229.05031
[9] Mcmullen, P.: On zonotopes. Trans. amer. Math. soc. 159, 1427-1431 (1971) · Zbl 0223.52007
[10] Minty, G. J.: On the abstract foundations of the theories of directed linear graphs, electrical networks, and network programming. J. math. Mech. 15, 485-520 (1966) · Zbl 0141.21601
[11] Ringel, G.: Teilungen der ebene durch geraden oder topologische geraden. Math. Z. 64, 79-102 (1955) · Zbl 0070.16108
[12] Rockafellar, R. T.: The elementary vectors of a subspace of RN, in combinatorial mathematics and its applications. Proc. of the chapel Hill conf., 104-127 (1969)
[13] Shannon, R. W.: Doctoral dissertation. (1974)
[14] Tutte, W. T.: Introduction to the theory of matroids. (1971) · Zbl 0231.05027
[15] Whitehead, J. H. C: Combinatorial homotopy, I. Bull. amer. Math. soc. 55, 213-245 (1949) · Zbl 0040.38704
[16] Whitney, H.: The abstract properties of linear dependence. Amer. J. Math. 57, 509-533 (1935) · Zbl 0012.00404
[17] Brown, M.: Locally flat embeddings of topological manifolds. Ann. of math. 75, 331-341 (1962) · Zbl 0201.56202
[18] Newman, M.: On the division of Euclidean n-space by topological n – 1 spheres. Proc. roy. Soc. London 257, 1-12 (1960) · Zbl 0094.17601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.