zbMATH — the first resource for mathematics

On the minimal canonical realizations of the Lie algebra \(O_c(n)\). (English) Zbl 0325.17001

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
22E70 Applications of Lie groups to the sciences; explicit representations
Full Text: EuDML
[1] H.D. Doebner and B. Pirrung, Spectrum-generating algebras and canonical realizations. Preprint IC/72/77.
[2] W. Miller, Jr., On Lie algebras and some special functions of mathematical physics. AMS Mem. no. 50, Providence, 1964. Zbl0132.29602 MR173031 · Zbl 0132.29602
[3] T.D. Palev, Nuovo Cim., t. 62, 1969, p. 585.
[4] A. Simoni and F. Zaccaria, Nuovo Cim., t. 59, A., 1969, p. 280. Zbl0197.26401 MR261882 · Zbl 0197.26401 · doi:10.1007/BF02754988
[5] A. Joseph, J. Math. Phys., t. 13, 1972, p. 351. Zbl0238.17004 · Zbl 0238.17004 · doi:10.1063/1.1665983
[6] J.L. Richard, Ann. Inst. H. Poincaré, t. 8, Sec. A., n^\circ 3, 1968, p. 301. Zbl0161.23705 · Zbl 0161.23705 · numdam:AIHPA_1968__8_3_301_0 · eudml:75594
[7] N. Jacobson, Lie algebras, Mir, Moskva, 1964 (in Russian). Zbl0121.27601 MR178096 · Zbl 0121.27601
[8] H.D. Doebner and T.D. Palev, On realizations of Lie algebras in factor spaces. Preprint IC/71/104. · Zbl 0215.38504
[9] D.L. Zhelobenko, Kompaktnyje gruppy Li i ich predstavlenija, Nauka, Moskva, 1970. Zbl0228.22013 · Zbl 0228.22013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.