Khurana, Surjit Singh Lattice-valued Borel measures. II. (English) Zbl 0325.28012 Trans. Am. Math. Soc. 235, 205-211 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 3 Documents MSC: 28B15 Set functions, measures and integrals with values in ordered spaces 46G10 Vector-valued measures and integration 28B05 Vector-valued set functions, measures and integrals 28A25 Integration with respect to measures and other set functions 28A10 Real- or complex-valued set functions × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Samuel Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc. 86 (1957), 70 – 90. · Zbl 0081.10903 [2] S. S. Khurana, Lattice-valued Borel measures, Rocky Mountain J. Math. 6 (1976), no. 2, 377 – 382. · Zbl 0283.28010 · doi:10.1216/RMJ-1976-6-2-377 [3] V. S. Varadarajan, Measures on topological spaces, Mat. Sb. (N.S.) 55 (97) (1961), 35 – 100 (Russian). [4] J. D. Maitland Wright, Stone-algebra-valued measures and integrals, Proc. London Math. Soc. (3) 19 (1969), 107 – 122. · Zbl 0186.46504 · doi:10.1112/plms/s3-19.1.107 [5] J. D. Maitland Wright, Measures with values in a partially ordered vector space, Proc. London Math. Soc. (3) 25 (1972), 675 – 688. · Zbl 0243.46049 · doi:10.1112/plms/s3-25.4.675 [6] J. D. Maitland Wright, The measure extension problem for vector lattices, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 4, 65 – 85 (English, with French summary). · Zbl 0215.48101 [7] J. D. Maitland Wright, An algebraic characterization of vector lattices with the Borel regularity property, J. London Math. Soc. (2) 7 (1973), 277 – 285. · Zbl 0266.46036 · doi:10.1112/jlms/s2-7.2.277 [8] J. D. Maitland Wright, An extension theorem, J. London Math. Soc. (2) 7 (1974), 531 – 539. · Zbl 0272.28010 · doi:10.1112/jlms/s2-7.3.531 [9] J. D. Maitland Wright, Embeddings in vector lattices, J. London Math. Soc. (2) 8 (1974), 699 – 706. · Zbl 0289.46007 · doi:10.1112/jlms/s2-8.4.699 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.