×

zbMATH — the first resource for mathematics

On the existence of capacitary strong type estimates in \(R^n\). (English) Zbl 0325.31008

MSC:
31B15 Potentials and capacities, extremal length and related notions in higher dimensions
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, D. R., Maximal operators and capacity,Proc. Amer. Math. Soc. 34 (1972), 152–156. · Zbl 0238.31008
[2] Adams, D. R., Traces of potentials II,Ind. U. Math. J. 22 (1973), 907–918. · Zbl 0265.46039
[3] Adams, D. R., Trace inequality for generalized potentials,Studia Math. 48 (1973), 99–105. · Zbl 0237.46037
[4] Adams, D. R., On the exceptional sets for spaces of potentials,Pacific J. Math. 52 (1974), 1–5. · Zbl 0294.31006
[5] Adams, D. R. &Meyers, N. G., Thinness and Wiener criteria for non-linear potentialsInd. U. Math. J. 22 (1972), 169–197. · Zbl 0244.31012
[6] Carleson, L.,Selected problems in exceptional sets, Van Nostrand, 1967. · Zbl 0189.10903
[7] Fefferman, C., The multiplier problem for the ball,Ann. of. Math. 94 (1971), 330–336. · Zbl 0234.42009
[8] Havin, V. P., Maz’ya, V. G., Non-linear potential theory,Uspehi Mat. Nauk 26 (1972). 67–138 (Russian Math. Surveys 1972.)
[9] Hedberg, L. I., Non-linear potentials and approximation in the mean by analytic functions,Math. Z.,129 (1972), 299–319. · Zbl 0243.31014
[10] Hedberg, L. I., On certain convolution inequalities,Proc. Amer. Math. Soc. 36 (1972), 505–510. · Zbl 0283.26003
[11] Maz’ya, V. G., Imbedding theorems and their applications,Baku Sympos. (1966), ”Nauka”,Moscow 1970, pp. 142–159, (Russian).
[12] Maz’ya, V. G., On some integral inequalities for functions of several variables,Problems in Math. Analysis, No. 3, (1972) Leningrad U. (Russian).
[13] Meyers, N. G., A theory of capacities for potentials of functions in Lebesgue classes,Math. Scand,26 (1970), 255–292. · Zbl 0242.31006
[14] Peetre, J., E’spaces d’interpolation et théorème de Soboleff,Ann. Inst. Fourier,16 (1966), 279–317. · Zbl 0151.17903
[15] Stein, E. M.,Singular integrals and differentiability properties of functions, Princeton U. Press, 1970. · Zbl 0207.13501
[16] Stein, E. M. andWeiss, G.,Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.