×

zbMATH — the first resource for mathematics

La variation d’ordre p des semi-martingales. (French) Zbl 0325.60047

MSC:
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Blumenthal, R. M., Getoor, R. K.: Some theorems on stable processes. Trans. Amer. Math. Soc. 95, 263-273 (1960) · Zbl 0107.12401 · doi:10.1090/S0002-9947-1960-0119247-6
[2] Blumenthal, R, M., Getoor, R. K.: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493-516 (1961) · Zbl 0097.33703
[3] Bretagnolle, J.: P-variation de fonctions aléatoires. Sém. Proba. VI, Lecture Notes in Math. 258. Berlin-Heidelberg-New York: Springer 1972
[4] Burkholder, D. L.: Maximal inequalities as necessary conditions for almost everywhere convergence. Z. Wahrscheinlichkeitstheorie verw. Gebiete 3, 75-88 (1964) · Zbl 0134.14602 · doi:10.1007/BF00531684
[5] Burkholder, D. L.: Distribution function inequalities for martingales. Ann. Probability 1, 19-42 (1973) · Zbl 0301.60035 · doi:10.1214/aop/1176997023
[6] Burkholder, D. L., Davis, B. J., Gundy, R. F.: Integral inequalities for convex functions of operators on martingales. Proc. 6th Berkeley Sympos. Math. Statist. Probab. 2, 223-240 (1972) · Zbl 0253.60056
[7] Cogburn, R., Tucker, H.: A limit theorem for a function of the increments of a decomposable process. Trans. Amer. Math. Soc. 99, 278-284 (1961) · Zbl 0107.12302 · doi:10.1090/S0002-9947-1961-0123353-0
[8] Doléans, C.: Construction du processus croissant naturel associé à un potentiel de la classe (D). C. R. Acad. Sci. Paris Sér. A-B 264, 600-602 (1967) · Zbl 0178.20703
[9] Doléans, C.: Variation quadratique des martingales continues à droite. Ann. Math. Statist. 40, 284-289 (1969) · Zbl 0177.21603 · doi:10.1214/aoms/1177697823
[10] Doléans, C., Meyer, P. A.: Intégrales stochastiques par rapport aux martingales locales. Sém. Proba. IV, Lecture Notes in Math. 124. Berlin-Heidelberg-New York: Springer 1970 · Zbl 0211.21901
[11] Kallenberg, O.: Path properties of processes with independent and interchangeable increments. Z. Wahrscheinlichkeitstheorie verw. Gebiete 28, 257-271 (1974) · Zbl 0266.60028 · doi:10.1007/BF00532944
[12] Lepingle, D.: Sur la variation d’ordre p des martingales locales. C. R. Acad. Sci. Paris Sér. A-B 281, 917-919 (1975) · Zbl 0326.60055
[13] Lepingle, D.: Quelques inégalités concernant les martingales. Studia Math. 59, 63-83 (1976) · Zbl 0413.60046
[14] Meyer, P. A.: Le dual de H 1 est BMO (cas continu). Sém. Proba. VII, Lecture Notes in Math. 321. Berlin-Heidelberg-New York: Springer 1973
[15] Meyer, P. A.: Un cours sur les intégrales stochastiques. Strasbourg (1975)
[16] Millar, P. W.: Path behavior of processes with stationary independent increments. Z. Wahrscheinlichkeitstheorie verw. Gebiete 17, 53-73 (1971) · Zbl 0203.50103 · doi:10.1007/BF00538475
[17] Millar, P. W.: Stochastic integrals and processes with stationary independent increments. Proc. 6th Berkeley Sympos. Math. Statist. Probab. 3, 307-331 (1972) · Zbl 0265.60051
[18] Monroe, I.: On the ?-variation of processes with stationary independent increments. Ann. Math. Statist. 43, 1213-1220 (1972) · Zbl 0268.60066 · doi:10.1214/aoms/1177692473
[19] Monroe, I.: On embedding right continuous martingales in Brownian motion. Ann. Math. Statist. 43, 1293-1311 (1972) · Zbl 0267.60050 · doi:10.1214/aoms/1177692480
[20] Monroe, I.: Almost sure convergence of the quadratic variation of martingales: a counter example. Ann. Probability 4, 133-138 (1976) · Zbl 0336.60048 · doi:10.1214/aop/1176996192
[21] Neveu, J.: Martingales à temps discret. Paris: Masson 1972 · Zbl 0235.60010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.