×

zbMATH — the first resource for mathematics

An accelerated multiplier method for nonlinear programming. (English) Zbl 0325.65027

MSC:
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Betts, J. T.,An Improved Penalty Function Method for Solving Constrained Parameter Optimization Problems, Journal of Optimization Theory and Applications, Vol. 16, Nos. 1/2, 1975. · Zbl 0281.90065
[2] Powell, M. J. D.,A Method for Nonlinear Constraints in Minimization Problems, Optimization, Edited by R. Fletcher, Academic Press, New York, New York, 1969. · Zbl 0194.47701
[3] Hestenes, M. R.,Multiplier and Gradient Methods, Journal of Optimization Theory and Applications, Vol. 4, No. 5, 1969.
[4] Miele, A., Cragg, E. E., Iyer, R. R., andLevy, A. V.,Use of the Augmented Penalty Function in Mathematical Programming Problems, Part 1, Journal of Optimization Theory and Applications, Vol. 8, No. 2, 1971. · Zbl 0208.45802
[5] Betts, J. T.,An Accelerated Multiplier Method for Nonlinear Programming, The Aerospace Corporation, El Segundo, California, Report No. TR-0075(5901-03), 1974.
[6] Fletcher, R.,A General Quadratic Programming Algorithm, Journal of the Institute of Mathematics Applications, Vol. 7, pp. 76-91, 1971. · Zbl 0226.90036 · doi:10.1093/imamat/7.1.76
[7] Fletcher, R.,A FORTRAN Subroutine for Quadratic Programming, UKAEA Research Group, Harwell, England, Report No. AERE-R6370, 1970.
[8] Fletcher, R.,Minimizing General Functions Subject to Linear Constraints, Numerical Methods for Nonlinear Optimization, Edited by F. A. Lootsma, Academic Press, New York, New York, 1972. · Zbl 0268.90061
[9] Betts, J. T.,Solving the Nonlinear Least Square Problem: Application of a General Method, The Aerospace Corporation, El Segundo, California, Report No. TR-0074(4901-03)-3, 1974.
[10] Haarhoff, P. C., andBuys, J. D.,A New Method for the Optimization of a Nonlinear Function Subject to Nonlinear Constraints, Computer Journal, Vol. 13, No. 2, 1970. · Zbl 0195.17403
[11] Fiacco, A. V., andMcCormick, G. P.,Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, New York, New York, 1968. · Zbl 0193.18805
[12] Colville, A. R., A Comparative Study on Nonlinear Programming Codes, IBM New York Scientific Center, Yorktown Heights, New York, Report No. 320-2949, 1968. · Zbl 0224.90069
[13] Box, M. J.,A Comparison of Several Current Optimization Methods and the Use of Transformations in Constrained Problems, Computer Journal, Vol. 9, pp. 67-77, 1966. · Zbl 0146.13304
[14] Miele, A., Cragg, E. E., andLevy, A. V.,Use of the Augmented Penalty Function in Mathematical Programming Problems, Part 2, Journal of Optimization Theory and Applications, Vol. 8, No. 2, 1971. · Zbl 0232.90055
[15] Pickett, H. E.,A Contribution to the Thaumaturgy of Nonlinear Programming, The Aerospace Corporation, San Bernardino, California, Report No. ATR-71(S9990)-1, 1970.
[16] Kuhn, H. W., andTucker, A. W.,Nonlinear Programming, Proceedings of Second Berkeley Symposium, Edited by J. Neyman, University of California Press, Berkeley, California, 1951.
[17] Gould, F. J.,Nonlinear Tolerance Programming, Numerical Methods for Nonlinear Optimization, Edited by F. A. Lootsma, Academic Press, New York, New York, 1972. · Zbl 0278.90058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.