×

zbMATH — the first resource for mathematics

Uniformly erasable AFL. (English) Zbl 0325.68042

MSC:
68Q45 Formal languages and automata
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ginsburg, G.; Harrison, M., Bracketed context-free languages, J. comput. system sci., 1, 1-23, (1967) · Zbl 0153.00802
[2] Ginsburg, G.; Greibach, S., Abstract families of languages, (), 1-32 · Zbl 0308.68058
[3] Ginsburg, S.; Greibach, S., Principal AFL, J. comput. system sci., 4, 308-338, (1970) · Zbl 0198.03102
[4] Ginsburg, S.; Spanier, E., Finite-turn pushdown automata, SIAM J. control, 4, 429-453, (1966) · Zbl 0147.25302
[5] Ginsburg, S.; Spanier, E., Control sets on grammars, Math. systems theory, 2, 159-177, (1968) · Zbl 0157.33604
[6] Ginsburg, S.; Spanier, E., Derivation-bounded languages, J. comput. system sci., 2, 228-250, (1968) · Zbl 0176.16703
[7] Ginsburg, S.; Spanier, E., AFL with the semilinear property, J. comput. system sci., 5, 365-396, (1971) · Zbl 0235.68029
[8] \scJ. Goldstine, Bounded context-free languages and erasing, in preparation.
[9] Greibach, S., Inverse of phrase structure generators, ()
[10] Greibach, S., An infinite hierarchy of context-free languages, J. assoc. comput. Mach., 16, 91-106, (1969) · Zbl 0182.02002
[11] Greibach, S., Checking automata and one-way stack languages, J. comput. system sci., 3, 196-217, (1969) · Zbl 0174.02702
[12] Greibach, S., Chains of full AFL’s, Math. systems theory, 4, 231-242, (1970) · Zbl 0203.30102
[13] \scS. Greibach, Erasable context-free languages, in preparation. · Zbl 0317.68059
[14] Greibach, S., Erasing in context-free AFL’s, Information and control, 21, 436-465, (1972) · Zbl 0248.68036
[15] Greibach, S.; Ginsburg, S., Multitape AFA, J. assoc. comput. Mach., 19, 193-221, (1972) · Zbl 0241.68031
[16] Knuth, D., A characterization of parentheses languages, Information and control, 11, 269-289, (1967) · Zbl 0196.01703
[17] \scM. Nivat, Transductions des languages de Chomsky, Ph.D. Thesis, University of Paris. · Zbl 0313.68065
[18] Ogden, Q., A helpful result for proving inherent ambiguity, Math. systems theory, 2, 191-194, (1968) · Zbl 0175.27802
[19] Yntema, M., Inclusion relations among families of context-free languages, Information and control, 10, 572-597, (1967) · Zbl 0207.31405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.