×

zbMATH — the first resource for mathematics

Necessary and sufficient conditions for a penalty method to be exact. (English) Zbl 0325.90055

MSC:
90C25 Convex programming
90C05 Linear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D.P. Bertsekas and S.K. Mitter, ”A descent numerical method for optimization problems with nondifferentiable cost functionals”,SIAM Journal on Control 11 (4) (1973) 637–652. · Zbl 0266.49023 · doi:10.1137/0311049
[2] S.P. Chebotarev, ”Variation of the penalty coefficient in linear programming problems”,Automation and Remote Control 34 (7) (1973) 102–107. · Zbl 0287.90014
[3] A.R. Conn, ”Constrained optimization using a nondifferentiable penalty function”,SIAM Journal on Numerical Analysis 10 (1973) 760–784. · Zbl 0259.90039 · doi:10.1137/0710063
[4] A.R. Conn and T. Pietrzykowski, ”A penalty function method converging directly to a constrained minimum”, Research Rept. 73-11, Dept. of Combinatorics and Optimization, University of Waterloo (May 1973). · Zbl 0361.90076
[5] J.P. Evans, F.J. Gould and J.W. Tolle, ”Exact penalty functions in nonlinear programming”,Mathematical Programming 4 (1) (1973) 72–97. · Zbl 0267.90079 · doi:10.1007/BF01584647
[6] Y.M. Ermol’ev and N.Z. Shor, ”On the minimization of nondifferentiable functions”,Kibernetica 3 (1) (1967) 101–102.
[7] A.V. Fiacco and G.P. McCormick,Nonlinear programming: sequential unconstrained minimization techniques (Wiley, New York, 1968). · Zbl 0193.18805
[8] S. Howe, ”New conditions for exactness of a simple penalty function”,SIAM Journal on Control 11 (2) (1973) 378–381. · Zbl 0255.90054 · doi:10.1137/0311029
[9] B.W. Kort and D.P. Bertsekas, ”Multiplier methods for convex programming”, in:Proceedings of 1973 IEEE decision and control conference, San Diego, Calif., Dec. 1973, pp. 428–432.
[10] B.W. Kort and D.P. Bertsekas, ”Combined primal dual and penalty methods for convex programming”,SIAM Journal on Control, to appear. · Zbl 0332.90035
[11] A.T. Kutanov, ”Refining the solution of the linear programming problem in the method of penalty functions”,Automation and Remote Control 39 (4) (1970) 127–132.
[12] D.G. Luenberger, ”Control problems with kinks”,IEEE Transactions on Automatic Control AC-15 (1970) 570–575. · doi:10.1109/TAC.1970.1099557
[13] R.T. Rockafellar,Convex analysis (Princeton University Press, Princeton, N.J., 1970). · Zbl 0193.18401
[14] T. Pietrzykowski, ”An exact potential method for constrained maxima”,SIAM Journal on Numerical Analysis 6 (2) (1969) 269–304. · Zbl 0181.46501 · doi:10.1137/0706028
[15] N.O. Vil’chevskii, ”Choosing the penalty coefficient in linear programming problems”,Automation and Remote Control 39 (4) (1970) 121–126.
[16] W.I. Zangwill, ”Nonlinear programming via penalty functions”,Management Science 13 (1967) 344–358. · Zbl 0171.18202 · doi:10.1287/mnsc.13.5.344
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.