zbMATH — the first resource for mathematics

Some properties of the constructivization of Boolean algebras. (English) Zbl 0326.02033

03D99 Computability and recursion theory
03F99 Proof theory and constructive mathematics
06E05 Structure theory of Boolean algebras
03G05 Logical aspects of Boolean algebras
Full Text: DOI
[1] S. S. Goncharov, ?Constructivizable superatomic Boolean algebras,? Algebra i Logika,12, No. 1, 31-40 (1973).
[2] L. Feiner, ?Hierarchies of Boolean algebras,? J. Symbolic Logic,35, No. 3, 365-373 (1970). · Zbl 0222.02048
[3] A. I. Mal’tsev, ?Strongly continuous models and recursively perfect algebras,? Dokl. Akad. Nauk SSSR,145, No. 2, 276-279 (1962).
[4] A. I. Mal’tsev, ?On recursive Abelian groups,? Dokl. Akad. Nauk. SSSR,146, No. 5, 1009-1012 (1962).
[5] S. S. Goncharov and A. T. Nurtazin, ?Constructive models of complete solvable theories,? Algebra i Logika,12, No. 2, 125-142 (1973).
[6] M. G. Peretyat’kin, ?Strongly constructive models and numberings of a Boolean algebra of recursive sets,? Algebra i Logika,10, No. 5, 535-557 (1971).
[7] Yu. L. Ershov, ?Constructive models,? in: Selected Questions of Algebra and Mathematical Logic [in Russian], Nauka (Siberian Section), Novosibirsk (1972), pp. 111-130.
[8] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967). · Zbl 0183.01401
[9] R. Sikorski, Boolean Algebras, Springer, New York (1969).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.