×

zbMATH — the first resource for mathematics

Whitney numbers of geometric lattices. (English) Zbl 0326.05027

MSC:
05B35 Combinatorial aspects of matroids and geometric lattices
06A06 Partial orders, general
55N99 Homology and cohomology theories in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baclawski, K, Automorphisms and derivations of incidence algebras, (), 351-356 · Zbl 0233.06001
[2] Cartan, H; Eilenberg, S, Homological algebra, (1956), Princeton University Press Princeton, NJ · Zbl 0075.24305
[3] Crapo, H; Rota, G.-C, On the foundations of combinatorial theory: combinatorial geometries, (1970), M.I.T. Press Cambridge, MA · Zbl 0216.02101
[4] Davis, R, Order algebras, Bull. amer. math. soc., 76, 83-87, (1970) · Zbl 0199.32103
[5] Deheuvels, R, Homologie des ensembles ordonnés et des espaces topologiques, Bull. soc. math. France, 90, 261-321, (1962) · Zbl 0171.21902
[6] Doubilet, P; Rota, G.-C; Stanley, R, On the foundations of combinatorial theory (VI): the idea of generating function, (), 267-318
[7] Folkman, J, The homology groups of a lattice, J. math. mech., 15, 631-636, (1966) · Zbl 0146.01602
[8] Godement, R, Topologie algébrique et théorie des faisceaux, (1958), Hermann Paris · Zbl 0080.16201
[9] Graves, W; Molnar, S, Incidence algebras as algebras of endomorphisms, Bull. amer. math. soc., 79, 815-820, (1973) · Zbl 0272.06003
[10] Griffiths, H, The homology groups of some ordered systems, Acta math., 129, 195-235, (1972) · Zbl 0245.05013
[11] Rota, G.-C, On the combinatorics of the Euler characteristic, Studies in pure mathematics, Rado festschrift, 221-233, (1971)
[12] Rota, G.-C, On the foundations of combinatorial theory (I): theory of Möbius functions, Z. wahrscheinlichkeitstheorie und verw. gebiete, 2, 340-368, (1964) · Zbl 0121.02406
[13] \scG.-C. Rota, The valuation ring of a distributive lattice, to appear.
[14] \scG.-C. Rota, personal communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.