×

Relative entropy of states of von Neumann algebras. (English) Zbl 0326.46031


MSC:

46L10 General theory of von Neumann algebras
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Araki, H., Publ. RIMS, Kyoto Univ. 9 (1973), 165-209.
[2] - , Common. Math. Phys. 38 (1974), 1-10.
[3] - , Pacific J. Math. 50 (1974), 309-354.
[4] - , Commun. Math. Phys. 44 (1975), 1-7.
[5] - , Recent developments in the theory of operator algebras and their significance in theoretical physics. To appear in Proceedings of convegno sulle algebre C* e low applicazioni in Fisica Teorica, Rome, 1975.
[6] - , Relative entropy and its applications. To appear in Proceedings of International colloquium on mathemancal methods of quantum field theory, 1975, Marseille.
[7] - y Inequalities in von Neumann algebras. To appear in Proceedings of Vingtieme rencontre entre physic/ens theoriciens et mathematiciens, May 1975, Strasbourg.
[8] Connes, A., Ann. Scient. Ecole Norm. Sup. 4e serie 6 (1973), 133-252.
[9] Dixmier, J., Les algebres d’operateur dans Vespacc hilbertien. Gauthier Villars, Paris, 1969.
[10] Kaplansky, T., Pacific J. Math. I (1951), 227-232.
[11] Lieb, E. H., Advances in Math. 11 (1973), 267-288.
[12] Lindblad, G., Commun. Math. Phys. 39 (1974), 111-119.
[13] Takesaki, M., Tomita’s theory of modular Hilbert albegras and its applications. Springer Verlag, 1970. · Zbl 0193.42502
[14] Umegaki, H., Kodai Math. Sem. Rep. 14 (1962), 59-85.
[15] Woronowicz, S. L., Reports on Math. Phys. 6 (1975), 487-495.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.