×

On decision rules in stochastic programming. (English) Zbl 0326.90049


MSC:

90C15 Stochastic programming
90C25 Convex programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Blackwell and N.S. Girshick,Theory of games and statistical decisions (Wiley, New York, 1954). · Zbl 0056.36303
[2] A. Charnes and W.W. Cooper, ”Chance-constrained programming”,Management Science 6 (1959) 73–79. · Zbl 0995.90600 · doi:10.1287/mnsc.6.1.73
[3] A. Charnes and W.W. Cooper, ”Deterministic equivalents for optimizing and satisficing under chance constraints”,Operations Research 11 (1963) 18–39. · Zbl 0117.15403 · doi:10.1287/opre.11.1.18
[4] A. Charnes and W.W. Cooper, ”Chance-constraints and normal deviates”,Journal of the American Statistical Association 52 (1962) 134–148. · Zbl 0158.38304 · doi:10.2307/2282444
[5] A. Charnes, W.W. Cooper and M.J.L. Kirby, ”Optimal decision rules in conditional probabilistic programming”,Atti della Accademia Nazionale dei Lincei, Memorie, Classe di Scienze Fisiche, Mathematiche e Naturali, Sezione VIII 45 (1968) 231–235. · Zbl 0175.17504
[6] A. Charnes, W.W. Cooper and G. Symonds, ”Cost horizons and certainty equivalents: An approach to stochastic programming of heating oil production”,Management Science 4 (1958) 235–263. · doi:10.1287/mnsc.4.3.235
[7] A. Charnes and M.J.L. Kirby, ”Optimal decision rules for the E-model of chance-constrained programming”,Cahiers du Centre d’Etudes de Recherche Operationelle 8 (1966) 5–44. · Zbl 0151.25002
[8] A. Charnes and M.J.L. Kirby, ”Optimal decision rules for the triangular E-model of chance-constrained programming”,Cahiers du Centre d’Etudes de Recherche Operationnelle 12 (1969) 215–243. · Zbl 0216.26707
[9] A. Charnes and M.J.L. Kirby, ”Some special P-models in chance-constrained programming”,Management Science 14 (1967) 183–195. · Zbl 0157.50206 · doi:10.1287/mnsc.14.3.183
[10] M.J. Eisner, ”On duality in infinite-player games and sequential chance-constrained programming”, Ph.D. Dissertation, Cornell University, Ithaca, N.Y. (1970).
[11] M.J. Eisner, R.S. Kaplan and J.V. Soden, ”Admissible decision rules for the E-model of chance-constrained programming”,Management Science 17 (1971) 337–353. · Zbl 0246.90034 · doi:10.1287/mnsc.17.5.337
[12] R. Kaplan and J. Soden, ”On the objective function for the sequential P-model of chance-constrained programming”,Operations Research 19 (1971) 105–114. · Zbl 0257.90032 · doi:10.1287/opre.19.1.105
[13] K.O. Kortanek and J.V. Soden, ”On the Charnes–Kirby optimality theorem for the conditional chance-constrained E-model”,Cahiers du Centre d’Etudes de Recherche Operationnelle 8 (1967) 78–98. · Zbl 0158.38305
[14] M. Lane, ”A conditional chance constrained model for reservoir control”, Manuscript, London School of Economics (1972).
[15] D. Walkup and R.J.-B. Wets, ”Stochastic programs with recourse”,SIAM Journal on Applied Mathematics 15 (1967) 1299–1314. · Zbl 0203.21806 · doi:10.1137/0115113
[16] D. Walkup and R.J.-B. Wets, ”Stochastic programs with recourse: Special forms”, in:Proceedings of the Princeton symposium on mathematical programming, Ed. H.W. Kuhn (1970) pp. 139–161. · Zbl 0264.90036
[17] D. Walkup and R.J.-B. Wets, ”A note on decision rules for stochastic programs”,Journal of Computer and System Sciences 2 (1968) 305–311. · Zbl 0167.18401 · doi:10.1016/S0022-0000(68)80012-1
[18] D. Walkup and R.J.-B. Wets, ”Lifting projections of convex polyhedra”,Pacific Journal of Mathematics 28 (1969) 465–475. · Zbl 0172.23702
[19] R.J.-B. Wets, ”Characterization theorems for stochastic programs with recourse”,Mathematical Programming 2 (1972) 166–175. · Zbl 0248.90042 · doi:10.1007/BF01584541
[20] W. Ziemba, ”Transforming stochastic dynamic programming problems into nonlinear programs”,Management Science 17 (1971) 450–462. · Zbl 0223.90030 · doi:10.1287/mnsc.17.7.450
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.