×

Parallel method of conjugate directions for minimization. (English) Zbl 0326.90050


MSC:

90C20 Quadratic programming
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] N. Adachi: On variable-metric algorithms. JOTA, 6 (1971), 391-410. · Zbl 0203.48703
[2] H. Y. Huang: Unified approach to quadratically convergent algorithms for minimization. JOTA, 6 (1970), 405-423. · Zbl 0184.20202
[3] R. Fletcher M. J. D. Powell: A rapidly convergent descent method for minimization. Comp. J., 2 (1963), 163-168. · Zbl 0132.11603
[4] M. R. Hestenes E. Stiefel: The method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards 49 (1952), 409-436. · Zbl 0048.09901
[5] R. Fletcher C. M. Reeves: Function minimization by conjugate gradients. Comp. J. 2., (1964), 149-154. · Zbl 0132.11701
[6] M. J. D. Powell: An efficient method for finding minimum of a function of several variables without calculating derivatives. Comp. J., 7 (1964), 155-162. · Zbl 0132.11702
[7] W. I. Zangwill: Minimizing a function without calculating derivatives. Com. J., 7 (1967), 293-296. · Zbl 0189.48004
[8] D. Chazan W. L. Miranker: A nongradient and parallel algorithm for unconstrained minimization. SIAM J. Control. 2 (1970), 207-217. · Zbl 0223.65022
[9] W. W. Bradbury R. Fletcher: New iterative methods for solution of the eigenproblern. Numer. Math., 9 (1966), 259-267. · Zbl 0202.43502
[10] R. Bellman R. Kalaba J. Lockett: Dynamic programming and ill-conditioned linear systems. J. of Math. Analysis and Applicat., 10 (1065), 206-215. · Zbl 0128.39302
[11] E. J. Beltrami: An algorithmic approach to nonlinear analysis and optimization. Academic Press, New York, 1970. · Zbl 0207.17202
[12] H. Tokumaru N. Adachi K. Goto: Davidson’s method for minimization problems in Hilbert space with an application to control problems. SIAM J. Control, 2 (1970), 163 - 178. · Zbl 0197.42802
[13] J. Céa: Optimization théorie et algorithmes. Dunad, Paris, 1971.
[14] D. M. Himmelblau: Decomposition of large-scale problems. North-Holl. publ. comp., New York, 1973. · Zbl 0254.90002
[15] F. Sloboda: Parallel projection method for linear algebraic systems. to appear. · Zbl 0398.65013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.