×

zbMATH — the first resource for mathematics

Convergence bounds for nonlinear programming algorithms. (English) Zbl 0326.90055

MSC:
90C30 Nonlinear programming
90C55 Methods of successive quadratic programming type
65K05 Numerical mathematical programming methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R.W. Cottle, ”A theorem of Fritz John in mathematical programming”, Memorandum RM-3858-PR, The Rand Corporation, Santa Monica, Calif. (1963).
[2] A.V. Fiacco and G.P. McCormick,Nonlinear programming: Sequential unconstrained minimization techniques (Wiley, New York, 1968). · Zbl 0193.18805
[3] T.N.E. Greville, ”The pseudoinverse of a rectangular or singular matrix and its application to the solution of systems of linear equations”,SIAM Review 1 (1959) 38–43. · Zbl 0123.11202
[4] F. John, ”Extremum problems with inequalities as subsidiary conditions”, in:Studies and essays: Courant anniversary volume (Interscience, New York, 1948) pp. 187–204.
[5] K.O. Kortanek and J.P. Evans, ”Pseudo-concave programming and Lagrange regularity”,Operations Research 15 (1967) 882–891. · Zbl 0149.38006
[6] H.W. Kuhn and A.W. Tucker, ”Nonlinear programming”, in: J. Neyman, ed.,Proceedings of the second Berkeley symposium on mathematical statistics and probability (University of California Press, Berkeley, Calif., 1951) pp. 481–492. · Zbl 0044.05903
[7] F.A. Lootsma, ”Boundary properties of penalty functions for constrained minimization”,Philips Research Reports, Supplement No. 3 (1970). · Zbl 0242.90020
[8] O.L. Mangasarian, ”Pseudo-convex Functions”,SIAM Journal on Control 3 (1965) 281–290. · Zbl 0138.15702
[9] O.L. Mangasarian,Nonlinear programming (McGraw-Hill, New York, 1969). · Zbl 0194.20201
[10] R. Mifflin, ”Convergence bounds for nonlinear programming algorithms”, Administrative Sciences Tech. Rept. No. 57, Yale University (1972). · Zbl 0268.90060
[11] R. Mifflin, ”Rates of convergence for a method of centers algorithm”, Administrative Sciences Tech. Rept. No. 59, Yale University (1972). · Zbl 0268.90060
[12] R. Mifflin, ”On the convergence of the logarithmic barrier function method”, in: F.A. Lootsma, ed.,Numerical methods for nonlinear optimization (Academic Press, London, 1972) pp. 367–369.
[13] R. Penrose, ”A generalized inverse for matrices”,Proceedings of the Cambridge Philosophical Society 51 (1955) 406–413. · Zbl 0065.24603
[14] R. Penrose, ”On best approximate solutions of linear matrix equations”,Proceedings of the Cambridge Philosophical Society 52 (1956) 17–19. · Zbl 0070.12501
[15] E. Polak,Computational methods in optimization (Academic Press, New York, 1971). · Zbl 0257.90055
[16] B.T. Poljak, ”Existence theorems and convergence of minimizing sequences in extremum problems with restrictions”, Doklady Akademii Nauk SSR 166 (1966) 287–290 [in Russian; English transl.:Soviet Mathematics Doklady 7 (1966) 72–75. · Zbl 0171.09501
[17] R.T. Rockafellar,Convex analysis (Princeton University Press, Princeton, N.J., 1970). · Zbl 0193.18401
[18] J.B. Rosen, ”The gradient projection method for nonlinear programming, Part I: Linear constraints”,Journal of the Society for Industrial and Applied Mathematics 8 (1960) 181–217. · Zbl 0099.36405
[19] D.M. Topkis, ”Cutting plane methods without nested constraint sets”,Operations Research 18 (1970) 404–413. · Zbl 0205.21903
[20] P. Wolfe, ”Methods of nonlinear programming”, in: R.L. Graves and P. Wolfe, eds.,Recent advances in mathematical programming (McGraw-Hill, New York, 1963) pp. 67–86. · Zbl 0225.90042
[21] W.I. Zangwill,Nonlinear programming: A unified approach (Prentice-Hall, Englewood Cliffs, N.J., 1969). · Zbl 0195.20804
[22] G. Zoutendijk,Methods of feasible directions (Elsevier, Amsterdam, 1960). · Zbl 0097.35408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.