zbMATH — the first resource for mathematics

A combinatorial ranking problem. (English) Zbl 0327.05122

05C35 Extremal problems in graph theory
05C05 Trees
68W99 Algorithms in computer science
Full Text: DOI EuDML
[1] Bellman, R. andKalaba, R.,On k-th best policies. J. Soc. Indust. Appl. Math.8 (1960), 582–588. · Zbl 0096.34304 · doi:10.1137/0108044
[2] Edmonds, J.,Matroid partition. InMathematics of the Decision Sciences Part 1, Lectures in Applied Mathematics Vol. 11. Amer. Math. Soc., Providence, R. I., 1968, pp. 335–345.
[3] Edmonds, J.,Matroids and the Greedy algorithm. Math. Programming1 (1971), 127–135. · Zbl 0253.90027 · doi:10.1007/BF01584082
[4] Harary, F.,Graph theory. Addison-Wesley, Reading, Massachusetts, 1969. · Zbl 0182.57702
[5] Holzmann, C. andHarary F.,On the tree graph of a matroid. SIAM J. Appl. Math.22 (1972), 187–193. · Zbl 0249.05102 · doi:10.1137/0122021
[6] Kruskal, J.,On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Amer. Math. Soc.7 (1956), 48–50. · Zbl 0070.18404 · doi:10.1090/S0002-9939-1956-0078686-7
[7] Pollack, M.,Solutions of the kth best route through a network – a review. J. Math. Anal. Appl.3 (1961), 547–559. · Zbl 0112.12105 · doi:10.1016/0022-247X(61)90076-2
[8] Shank, H. S.,Note on Hamilton circuits in tree graphs. IEEE Trans. C. T.15 (1968), 86. · Zbl 0164.05201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.