×

zbMATH — the first resource for mathematics

Splitting property of lattice ordered groups. (English) Zbl 0327.06013

MSC:
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
06F15 Ordered groups
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] S. J. Bernau: Orthocompletion in lattice groups. Proc. London Math. Soc, 16 (1966), 444-480. · Zbl 0136.29103
[2] G. Birkhoff: Lattice theory. third edition. Providence 1967. · Zbl 0153.02501
[3] P. Conrad: The essential closure of an archimedean lattice-ordered group. Duke Math. J. 38 (1971), 151-160. · Zbl 0216.03104
[4] P. Conrad D. McAllister: The completion of a lattice ordered group. J. Austral. Math. Soc. 9 (1969), 182-208. · Zbl 0172.31601
[5] Л. Фукс: Частично упорядоченные алгебраические системы. Москва 1965. · Zbl 1099.01519
[6] J. Jakubík: Centrum nekonečne distributivnych zväzov. Matem. fyz. čas. 7 (1957), 116- 120.
[7] J. Jakubík: Konvexe Ketten in l-Gruppen. Časop. pěst. mat. 84 (1959), 53 - 63. · Zbl 0083.01803
[8] Я. Якубик: Представления и расширения l-групп. Чех. мат. ж. 13 (1963), 267-283. · Zbl 0288.60070
[9] J. Jakubik: On \(\sigma \)-complete lattice ordered groups. Czech. Math. J. 23 (1973), 164-174. · Zbl 0278.06016
[10] J. Jakubík: Conditionally \(\alpha \)-complete sublattices of a distributive lattice. Alg. univ. 2 (1972), 9-15. · Zbl 0258.06008
[11] G. Jameson: Ordered linear spaces. Lecture Notes 141, Springer Verlag, Berlin 1970. · Zbl 0196.13401
[12] Ф. Шик: К теории структурно упорядоченных групп. Чех. мат. ж. 6 (1956), 1 - 25. · Zbl 0995.90522
[13] А. Й. Векслер В. А. Гейлер: О порядковой и дизъюнктной полноте линейных полуупорядоченных пространств. Сибир. мат. ж. 13 (1972), 43-51. · Zbl 1225.01023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.