×

zbMATH — the first resource for mathematics

The eigenvalue problem \(\lambda Tx+Sx\). (English) Zbl 0327.15015

MSC:
15A18 Eigenvalues, singular values, and eigenvectors
15A09 Theory of matrix inversion and generalized inverses
34A30 Linear ordinary differential equations and systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boullion, T.L; Odell, P.L, Generalized inverse matrices, (1971), Wiley New York · Zbl 0880.15013
[2] Duffin, R.J, A minimax theory for overdamped networks, J. rat. mech. anal., 4, 221-233, (1955) · Zbl 0068.20904
[3] Erdelyi, I, On the matrix equation ax = λbx, J. math. anal. appl, 17, 119-132, (1967) · Zbl 0153.04902
[4] Fettis, H.E, Note on the matrix equation ax = λbx, Comput. J., 8, 279, (1965) · Zbl 0135.37601
[5] Fix, G; Heiberger, R, An algorithm for the ill-conditioned generalized eigenvalue problem, SIAM J. num. anal., 9, 78-88, (1972) · Zbl 0252.65028
[6] Gantmacher, F.R, ()
[7] Lancaster, P, Lambda-matrices and vibrating systems, (1966), Pergamon Oxford · Zbl 0146.32003
[8] Mangasarian, O.L, Perron-trobenius properties of ax-λbx, J. math. anal. appl., 36, 86-102, (1971) · Zbl 0224.15010
[9] Martin, R.S; Wilkinson, J.H, Reduction of the symmetric eigen problem ax = λbx and related problems to standard form, Num. math., 11, 98-100, (1968) · Zbl 0162.46901
[10] Peters, G; Wilkinson, J.H, ax = λbx and the generalized eigen problem, SIAM J. num. anal., 7, 479-492, (1970) · Zbl 0276.15016
[11] Rall, L, Newton’s method for characteristic value problem ax = λbx, SIAM J. appl. math., 9, 288-293, (1961) · Zbl 0109.09104
[12] Rao, C.R; Mitra, S.K, Generalized inverse of matrices and its applications, (1971), John Wiley New York
[13] Stewart, G.W, On the sensitivity of the eigenvalue problem ax = λbx, SIAM J. num. anal., 9, 669-686, (1972) · Zbl 0252.65026
[14] Wilkinson, J.H, The algebraic eigenvalue problem, (1965), Clarendon Oxford · Zbl 0258.65037
[15] Bishop, R.E.D; Gladwell, G.M.L; Michaelson, S, The matrix analysis of vibration, (1965), Cambridge, London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.