Convex antiproximinal sets in spaces \(c_0\) and \(c\). (English. Russian original) Zbl 0327.41030

Math. Notes 17, 263-268 (1975); translation from Mat. Zametki 17, 449-457 (1975).


41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
46B99 Normed linear spaces and Banach spaces; Banach lattices
41A50 Best approximation, Chebyshev systems
Full Text: DOI


[1] R. R. Holmes, A Course on Optimization and Best Approximation, Lecture Notes in Math., No. 257, Springer-Verlag (1972). · Zbl 0235.41016
[2] V. Klee, ?Remarks on nearest points in normed linear spaces,? Proc. Colloq. Convexity (Copenhagen, 1965), Copenhagen (1967), pp. 168-176.
[3] M. Edelstein, ?A note on nearest points,? Quart. J. Math.,21, No. 84, 403-406 (1970). · Zbl 0201.44505
[4] M. Edelstein and A. C. Thompson, ?Some results on nearest points and support properties of convex sets in c0,? Pacific J. Math.,40, No. 3, 553-560 (1972). · Zbl 0202.39503
[5] S. Banach, Théorie des Opérations Linéaires, Warszawa (1932).
[6] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Wiley (1959). · Zbl 0084.10402
[7] V. D. Mil’man, ?Geometric theory of Banach spaces, I. Theory of base and minimal systems,? Usp. Matem. Nauk,25, No. 3, 113-171 (1970).
[8] S. I. Zukhovitskii, ?On minimal extensions of linear functionals in the space of continuous functions,? Izv. Akad. Nauk SSSR, Ser. Matem.,21, No. 3, 409-422 (1957).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.