×

Feuilletage et difféomorphismes infiniment tangents à l’identité. (French) Zbl 0327.58004


MSC:

58D05 Groups of diffeomorphisms and homeomorphisms as manifolds
57R30 Foliations in differential topology; geometric theory
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Haefliger, A.: Homotopy and integrability. In: Manifolds ? Amsterdam 1970. Lecture Notes in Math.197. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0215.52403
[2] Kopell, N.: Commuting diffeomorphisms. In: Global analysis, Proc. of Symp. in Pure Math.,XIV, 1970 · Zbl 0225.57020
[3] Mather, J.: On haefliger’s classifying space. I. Bull. of the A.M.S.77, 1111-1115 (1971) · Zbl 0224.55022
[4] Mather, J.: Integrability in codimension one. Comm. Math. Helv.48, 195-233 (1973) · Zbl 0284.57016
[5] Mather, J.: Commutators ofC r diffeomorphisms of the real line. Preprint, version préliminaire de [6]
[6] Mather, J.: Commutators of diffeomorphisms. Comm. Math. Helv.49, 512-528 (1974) · Zbl 0289.57014
[7] Mizutani, T.: Foliated cobordisms ofS 3 and examples of foliated 4-manifolds. Topology13, 353-362 (1974) · Zbl 0295.57012
[8] Rosenberg, H., Thurston, W.: Some remarks on foliations. In: Dynamical Systems. New York-London: Academic Press 1973 · Zbl 0286.57014
[9] Sergeraert, F.: Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications. Ann. Sc. de l’E.N.S. de Paris, 4è série,5, 599-660 (1972) · Zbl 0246.58006
[10] Sternberg, S.: LocalC n transformations of the real line. Duke Math. J.24, 97-102 (1957) · Zbl 0077.06201
[11] Szekeres, G.: Regular iteration of real and complex functions. Acta Math.100, 203-258 (1958) · Zbl 0145.07903
[12] Takens, F.: Normal forms for certain singularities of vectorfields. Ann. Inst. Fourier23, 163-195 (1973) · Zbl 0266.34046
[13] Thurston, W.: Existence of codimension one foliations. Ann. Math.104, 249-268 (1976) · Zbl 0347.57014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.