zbMATH — the first resource for mathematics

Obtention des fonctions splines usuelles à l’aide de la théorie des espaces gaussiens. (French) Zbl 0327.60030
60G15 Gaussian processes
Full Text: DOI EuDML
[1] J. NEVEU, Processus aléatoires gaussiens, Séminaire Montréal, été 1968. Zbl0192.54701 MR272042 · Zbl 0192.54701
[2] C. BONNEMOY, Quadratures optimales pour une fonction aléatoire gaussienne. Colloque d’Analyse Numérique, Super-Besse, juin 1970.
[3] C. F. DUCATEAU, J. L. JOLY, Fonctions Inf-loc t -compactes, fonctions hilbertienne fonctions splines. Institut de Math. Appliquées, CEDEX 53, 38-Grenoble-Gare. 1971.
[4] E. PARZEN, Time series analysis papers, Holden Day, 1967. Zbl0171.39602 MR223042 · Zbl 0171.39602
[5] H. B. CURRY - I. J. SCHOENBERG, On polya frequency functions, Journal d’Analyse Math., vol. XVIII, 1966. Zbl0146.08404 · Zbl 0146.08404
[6] C. CARASSO, Méthodes numériques pour Vobtention des fonctions splines Thèse de 3e Cycle, Grenoble, 1966.
[7] G. S. KIMELDORF et G. WAHBA, A correspondance between Bayesian Estimation on Stochastic processes and Smoothing by Splines, Annals of Math. Stat., 1970, vol. 41. Zbl0193.45201 MR254999 · Zbl 0193.45201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.