zbMATH — the first resource for mathematics

Rectangular thin elastic plate with edges ’remaining straight’ during the deformation. (English) Zbl 0327.73055
74K20 Plates
74G60 Bifurcation and buckling
Full Text: EuDML
[1] Berger M. S.: On von Kármán’s equations and the buckling of a thin elastic plate, I. The clamped plate. - Comm. Pure Appl. Math. 20 (1961), 687-719. · Zbl 0162.56405
[2] Berger M. S., Fife P. C.: Von Kármán’s equations and the buckling of a thin elastic plate, II. Plate with general edge conditions. - Comm. Pure Appl. Math., 21 (1968), 227-241. · Zbl 0162.56501
[3] Knightly G. H.: An existence theorem for the von Kármán equations. – Arch. Rat. Mech. Anal., 27 (1967), 233-242. · Zbl 0162.56303
[4] Муштари Х. М., Галимов К. 3.: Нелинейная теория упругих оболочек. - Таткнигоиздат, Казань 1957. · Zbl 0995.90594
[5] Nečas J.: Les méthodes directes en théorie des équations elliptiques. - Academia, Prague 1967. · Zbl 1225.35003
[6] Nečas J., Naumann J.: On a boundary value problem in nonlinear theory of thin elastic plates. - Aplikace Matematiky., 19 (1974), 7-16. · Zbl 0295.73056
[7] Папкович П. Ф.: Строительная механика корабля, II. - Оборонгиз, Ленинград 1941. · Zbl 0063.09073
[8] Скрыпиик И. В.: Точки бифуркации вариационных задач. - Математическая физика, В. Р., Наукова Думка, Киев 1971, 117-123. · Zbl 1168.35423
[9] Скрыпник И В.: О бифуркации равновесия гибких пластин. - Математическая физика, B. 13., Наукова думка, Киев 1973, 159-161. · Zbl 1221.53041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.