Inverse eigenvalue problems for Jacobi matrices. (English) Zbl 0328.15007


15B48 Positive matrices and their generalizations; cones of matrices
15A18 Eigenvalues, singular values, and eigenvectors
Full Text: DOI


[1] Anderson, L., On the effective determination of the wave operator from given spectral data in the case of a difference equation corresponding to a Sturm-Liouville d ifferential equation, J. Math. Anal. Appl., 29, 467-497 (1970) · Zbl 0211.12401
[2] Gantmacher, F. R.; Krein, M. G., Oszillationsmatrizen, Oszillations-kerne und kleine Schwingungen mechanischer Systeme (1960), Akademie-Verlag: Akademie-Verlag Berlin · Zbl 0088.25103
[3] Hadeler, K. P., Multiplicative inverse eigenwert probleme, Linear Algebra Appl., 2, 65-86 (1969) · Zbl 0182.05201
[4] Hald, O. H., On discrete and numerical inverse Sturm-Liouville problems, (Ph.D. Thesis (1972), New York Univ: New York Univ New York), Available from Department of Computer Sciences, Uppsala Univ., Sweden, as rep. No. 42, 1972
[5] Hochstadt, H., On some inverse problems in matrix theory, Arch. Math., 18, 201-207 (1967) · Zbl 0147.27701
[6] Hochstadt, H., On the construction of a Jacobi matrix from spectral data, Linear Algebra Appl., 8, 435-446 (1974) · Zbl 0288.15029
[7] Kato, T., Perturbation theory for linear operators (1966), Springer: Springer New York · Zbl 0148.12601
[8] Szegö, G., Orthogonal Polynomials (1939), Am. Math. Soc. Colloq. Publ. XXIII: Am. Math. Soc. Colloq. Publ. XXIII New York · JFM 65.0278.03
[9] Wilkinson, J. H.; Reinsch, C., Linear Algebra, Handbook for Automatic Computation II (1971), Springer: Springer Berlin · Zbl 0219.65001
[10] Wilkinson, J. H., Rounding Errors in Algebraic Processes (1963), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J · Zbl 0113.10606
[11] Wilkinson, J. H., The Algebraic Eigenvalue Problem (1965), Oxford U. P: Oxford U. P London · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.