zbMATH — the first resource for mathematics

Twisted group rings and quasi-Frobenius quotient rings. (English) Zbl 0328.20004

20C05 Group rings of finite groups and their modules (group-theoretic aspects)
16S34 Group rings
16L60 Quasi-Frobenius rings
16P50 Localization and associative Noetherian rings
Full Text: DOI
[1] I. G. Conell, On the group ring. Canad. J. Math.15, 650-685 (1963). · Zbl 0121.03502 · doi:10.4153/CJM-1963-067-0
[2] C. R. Hajarnavis, Orders in QF and QF 2 rings. J. Algebra19, 329-343 (1971). · Zbl 0224.16016 · doi:10.1016/0021-8693(71)90093-7
[3] A.Horn, Gruppenringe fastpolyzyklischer Gruppen und Ordnungen in Quasi-Frobenius-Ringen. Mitt. Math. Sem. Gießen100 (1973). · Zbl 0258.16009
[4] A.Horn, Quasi-Frobenius quotient rings of group rings. J. Austral. Math. Soc., to appear. · Zbl 0312.16009
[5] I. Hughes, Artinian quotient rings of group rings. J. Austral. Math. Soc.16, 379-384 (1973). · Zbl 0272.16002 · doi:10.1017/S1446788700015202
[6] D. S. Passman, Radicals of twisted group rings. Proc. London Math. Soc. (3)20, 409-437 (1970). · Zbl 0192.35802 · doi:10.1112/plms/s3-20.3.409
[7] A.Reid, Twisted group rings which are semiprime Goldie rings. Glasgow Math. J., to appear. · Zbl 0311.16008
[8] A.Reid, Twisted group rings with artinian quotient rings. Math. Z., to appear.
[9] L. W. Small, Orders in Artinian rings. J. Algebra4, 13-41 (1966). · Zbl 0147.28703 · doi:10.1016/0021-8693(66)90047-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.