zbMATH — the first resource for mathematics

Strong Morita equivalence of certain transformation group \(C^*\)-algebras. (English) Zbl 0328.22013

22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
22D30 Induced representations for locally compact groups
43A85 Harmonic analysis on homogeneous spaces
46L05 General theory of \(C^*\)-algebras
Full Text: DOI EuDML
[1] Blattner, R. J.: On a theorem of G. W. Mackey. Bull. Amer. Math. Soc.68, 585-587 (1962) · Zbl 0122.35202 · doi:10.1090/S0002-9904-1962-10859-3
[2] Bourbaki, N.: Int?gration. Chaps. 7 et 8. Act. Sci. Ind. No. 1306. Paris: Hermann 1963
[3] Dixmier, J.: LesC*-alg?bres et leurs Repr?sentations. Paris: Gauthier-Villars 1964
[4] Effros, E., Hahn, F.: Locally compact transformation groups andC*-algebras. Memoirs Amer. Math. Soc.75 (1967) · Zbl 0166.11802
[5] Mackey, G. W.: Unitary representations of group extensions, I. Acta Math.99, 265-311 (1958) · Zbl 0082.11301 · doi:10.1007/BF02392428
[6] Nielsen, O. A.: The Mackey-Blattner theorem and Takesaki’s generalized commutation relation for locally compact groups. Duke Math. J.40, 105-114 (1973) · Zbl 0256.22010 · doi:10.1215/S0012-7094-73-04011-8
[7] Rieffel, M. A.: Induced representations ofC*-algebras. Advances Math.13, 176-257 (1974) · Zbl 0284.46040 · doi:10.1016/0001-8708(74)90068-1
[8] Rieffel, M. A.: Morita equivalence forC*-algebras andW*-algebras. J. Pure Appl. Algebra5, 51-96 (1974) · Zbl 0295.46099 · doi:10.1016/0022-4049(74)90003-6
[9] Rieffel, M. A.: Commutation theorems and generalized commutation relations. Bull. Soc. Math. France, to appear · Zbl 0345.43010
[10] Takesaki, M.: Covariant representations ofC*-algebras and their locally compact automorphism groups. Acta Math.119, 273-303 (1967) · Zbl 0163.36802 · doi:10.1007/BF02392085
[11] Takesaki, M.: A generalized commutation theorem for the regular representation. Bull. Soc. Math. France97, 289-297 (1969) · Zbl 0188.20101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.