×

zbMATH — the first resource for mathematics

K-flots et théorème de renouvellement. (French) Zbl 0328.60036

MSC:
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60K05 Renewal theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Blanchard, F.: Partitions extrémales des flots spéciaux. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 36, 2, 129-136 (1976) · Zbl 0327.28012 · doi:10.1007/BF00533996
[2] Feller, W.: An introduction to probability theory and its Applications. Vol. II. New York: Wiley 1966 · Zbl 0138.10207
[3] Gurevi?, B. M.: Some existence conditions for K-decompositions for special flows. Trans. Moscow Math. Soc. 17, 99-126 (1967)
[4] Krengel, U.: DarstellungssÄtze für Strömungen und Halbströmungen I et II. Math. Ann. 176, 181-190 (1968) et 182, 1-39 (1969) · Zbl 0167.32704 · doi:10.1007/BF02052824
[5] Ledrappier, F.: Thèse d’Etat. Université Paris VI (1975)
[6] Ledrappier, F.: Sur la condition de Bernoulli faible et ses Applications. Journées Ergodiques, Université de Rennes · Zbl 0394.28011
[7] Meyer, P. A.: Probabilités et Potentiel. Paris: Hermann 1976
[8] Delasnerie, M., Neveu, J.: Note aux C. R. Acad. Sci. Paris Sér A-B [à paraÎtre]
[9] Parry, W.: Entropy and generators in ergodic theory. N. Y.: Benjamin 1969 · Zbl 0175.34001
[10] Ratner, M.: Anosov flows with Gibbs measures are also Bernoullian. Israel J. Math. 17, 4, 380-391 (1974) · Zbl 0304.28011 · doi:10.1007/BF02757140
[11] Revuz, D.: Markov Chains. Amsterdam: North Holland 1975 · Zbl 0332.60045
[12] Rudolph, D.: A two-valued step coding for ergodic flows. Preprint · Zbl 0325.28019
[13] de Sam Lazaro, J., Meyer, P.A.: Questions de théorie des flots. Séminaire de Probabilités IX. Université de Strasbourg. Lecture Notes in Math. 465, p. 1-96, Berlin-Heidelberg-New York: Springer 1976
[14] Totoki, H.: On a class of Special Flows. Z. Wahrscheinlichkeitstheorie verw. Gebiete 15, 157-167 (1970) · Zbl 0193.45903 · doi:10.1007/BF00531884
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.