×

zbMATH — the first resource for mathematics

A numerical solution of the Navier-Stokes equations using the finite element technique. (English) Zbl 0328.76020

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Oden, J.T., The finite element method in fluid mechanics, Lecture for NATO advanced study institute on finite element methods in continuum mechanics, (1971), Lisbon · Zbl 0226.65051
[2] Hood, P., A finite element solution of the Navier-Stokes equations for incompressible contained flow, () · Zbl 0328.76020
[3] Cheng, S.I., Numerical integration of Navier-Stokes equations, Aiaa jl, 8, 2115-2122, (1970)
[4] Zienkiewics, O.C.; Cheung, Y.K., Finite elements in the solution of field problems, The engineer, 220, 507-510, (1965)
[5] de Vries, G.; Norrie, D.H., The application of the finite element technique to potential flow problems, Trans. ASME appl. mech. div., paper no. 71-APM-22, 798-802, (1971) · Zbl 0228.76038
[6] Ergatoudis, J.; Irons, B.M.; Zienkiewicz, O.C., Curved isoparametric, quadrilateral elements for finite element analysis, Int. J. solids struct., 4, 31-42, (1968) · Zbl 0152.42802
[7] Irons, B.M., A conforming quartic triangular element for plate bending, Int. J. num. meth. engng, 1, 29-45, (1969) · Zbl 0247.73071
[8] Zenisek, A., Interpolation polynomials on the triangle, Numer. math., 15, 283-296, (1970) · Zbl 0216.38901
[9] Hussey, M.J.L.; Thatcher, R.W.; Bernal, M.J.M., On the construction and use of finite elements, J. inst. maths. applics., 6, 263-282, (1970) · Zbl 0211.47502
[10] Zienkiewicz, O.C., ()
[11] Oden, J.T., A general theory of finite elements II applications, Int. J. num. meth. engng, 1, 247-259, (1969) · Zbl 0263.73048
[12] Tong, P., The finite element method for fluid flow, paper US5-4, ()
[13] Finlayson, B.A.; Scriven, L.E., The method of weighted residuals and its relation to certain variational principles for the analysis of transport processess, Chem. engng sci., 20, 395-404, (1965)
[14] Finlayson, B.A.; Scriven, L.E., The method of weighted residuals—a review, Appl. mech. rev., 19, 735-748, (1966)
[15] Finlayson, B.A.; Scriven, L.E., On the search for variational principles, Int. J. heat mass transfer, 10, 799-821, (1961) · Zbl 0148.44102
[16] J. Davis, and P. Hood, Finite element formulation with reference to fluid dynamics, To be published. · Zbl 0309.76023
[17] Baker, A.J., Finite element theory for viscous fluid dynamics, () · Zbl 0255.76042
[18] Baker, A.J., Finite element computational theory for three dimensional boundary layer flow, (), San Diego, California · Zbl 0291.76016
[19] J. Davis; C. Taylor, Finite element solution of the tidal hydraulic equations, To be published.
[20] Schlichting, H., Boundary layer theory, (1960), McGraw-Hill New York · Zbl 0096.20105
[21] Taylor, R.L., On completeness of shape functions for finite element analysis, Int. J. num. meth. engng, 4, 17-22, (1972) · Zbl 0255.73095
[22] Spreeuw, E., Fiesta: finite elements stress and temperature anlysis, Reactor centrum nederland rep. RCN-149, (1971)
[23] Card, C.C.H., ()
[24] Atkinson, B.; Card, C.C.H.; Irons, B.M., Application of the finite element method to creeping flow problems, Trans. instn chem. engrs, 48, T276-T284, (1970)
[25] Atkinson, B.; Brocklebank, M.P.; Card, C.C.H.; Smith, J.M., Low Reynolds number developing flows, A.I.ch.E. jl, 15, 548-553, (1969)
[26] Zienkiewicz, O.C.; Taylor, C., Weighted residual processes in F.E.M. with particular reference to some coupled and transient problems, Lecture for NATO advanced study institute on finite element methods in continuum mechanics, (1971), Lisbon
[27] Bird, R.B., New variational principle for incompressible non-Newtonian flow, Phys. fluids, 3, 539-541, (1960) · Zbl 0094.38802
[28] B. Atkinson, Private Communication, University of Wales, Swansea (1972).
[29] Kikuchi, F.; Ando, Y., A finite element method for initial value problems, ()
[30] Zienkiewicz, O.C.; Parekh, C.J., Transient field problems: two dimensional and three dimensionial analysis by isoparametric finite elements, Int. J. num. meth. engng, 2, 61-71, (1970) · Zbl 0262.73072
[31] Tong, P.; Fung, Y.C., Slow particulate viscous flow in channels and tubes-application to biomechanics, Trans. ASME appl. mech. div., paper no. 71-APM-R, 721-728, (1971) · Zbl 0224.76108
[32] Stark, K.P., A numerical study of the non-linear laminar regime of flow in an idealised porous medium, ()
[33] Mills, R.D., Numerical solution of the viscous flow equations for a class of closed flows, Jl. R.aeronaut. soc., 69, 714-718, (1965)
[34] Burggraf, O.R., Analytic and numerical studies of the structure of steady separated flows, J. fluid mech., 24, 113-151, (1966)
[35] P. Hood, Ph. D. Thesis, University of Wales, Swansea. To be submitted.
[36] Bogner, F.K.; Fox, R.L.; Schmit, L.A., The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas, () · Zbl 0159.55806
[37] Taneda, S., Experimental investigation of the akes behind cylinders and plates at low Reynolds numbers, J. phys. soc. Japan, 11, 302-307, (1956)
[38] Kawaguti, M.; Jain, P., Numerical study of a viscous fluid flow past a circular cylinder, J. phys. soc. Japan, 21, 2055-2062, (1966)
[39] Dennis, S.C.R.; Chang, G.Z., Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, J. fluid mech., 42, 471-489, (1970) · Zbl 0193.26202
[40] Takami, H.; Keller, H.B., Steady two-dimensional viscous flow of an incompressible fluid past a circular cylinder, Phys. fluids, Suppl. II, II-51-II-56, (1969) · Zbl 0206.55004
[41] Jain, P.C.; Rao, K.S., Numerical solution of unsteady viscous incompressible flow past a circular cylinder, Phys. fluids, Suppl. II, II-57-II-64, (1969) · Zbl 0206.55005
[42] Thoman, D.C.; Szewczyk, A.A., Time dependent viscous flow over a circular cylinder, Phys. fluids, Suppl. II, II-76-II-86, (1969) · Zbl 0208.55302
[43] Olson, M.D., A variational finite element method for two-dimensional steady viscous flows, mcgill university engineering institute of Canada, ()
[44] Kan, D., Mesh and contour plot for triangle and isoparametric elements, (), Dept. Civil Engineering
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.